A.5或6或7 B.6或7 C.6或7或8 D.7或8或9 【考点】由三视图判断几何体. 【分析】首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;最后从左视图判断出第一层、第二层的个数,进而求出组成这个几何体的小正方体的个数是多少即可. 【解答】解:根据几何体的左视图,可得这个几何体共有3层, 从俯视图可以可以看出最底层的个数是4个, (1)当第一层有1个小正方体,第二层有1个小正方体时, 组成这个几何体的小正方体的个数是: 1+1+4=6(个); (2)当第一层有1个小正方体,第二层有2个小正方体时, 或当第一层有2个小正方体,第二层有1个小正方体时, 组成这个几何体的小正方体的个数是: 1+2+4=7(个); (3)当第一层有2个小正方体,第二层有2个小正方体时, 组成这个几何体的小正方体的个数是: 2+2+4=8(个). 综上,可得 组成这个几何体的小正方体的个数是6或7或8. 故选:C. 【点评】此题主要考查了由三视图判断几何体,考查了空间想象能力,要熟练掌握,解答此题的关键是要明确:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
完整试题以及参考答案,请下载附件
|