答案家

 找回密码
 立即注册
查看: 408|回复: 0

夏津实验中学2017届_九年级上_期中数学试卷_参考答案

[复制链接]

1万

主题

1万

帖子

82万

积分

校长

Rank: 9Rank: 9Rank: 9

积分
820712
发表于 2017-1-22 15:19:12 | 显示全部楼层 |阅读模式
2.用配方法解一元二次方程x26x+4=0,下列变形正确的是(  )
A.(x﹣6)2=﹣4+36        B.(x﹣6)2=4+36        C.(x﹣3)2=﹣4+9        D.(x﹣3)2=4+9
【考点】解一元二次方程-配方法.
【分析】根据配方法的步骤先把方程移项,再两边加上9变形即可得到结果.
【解答】解:由原方程,得
x26x=﹣4,
配方,得
x26x+9=﹣4+9,即(x﹣3)2=﹣4+9.
故选:C.
【点评】此题考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
 
3.一元二次方程x2x﹣2=0的解是(  )
A.x1=1,x2=2        B.x1=1,x2=﹣2        C.x1=﹣1,x2=﹣2        D.x1=﹣1,x2=2
【考点】解一元二次方程-因式分解法.
【专题】因式分解.
【分析】直接利用十字相乘法分解因式,进而得出方程的根
【解答】解:x2x﹣2=0
x﹣2)(x+1)=0,
解得:x1=﹣1,x2=2.
故选:D.
【点评】此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.
 
4.若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是(  )
A.没有实数根        B.有两个相等的实数根
C.有两个不相等的实数根        D.无法判断
【考点】根的判别式.
【专题】计算题.
【分析】根据已知不等式求出k的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况.
【解答】解:∵5k+20<0,即k<4,
∴△=16+4k<0,
则方程没有实数根.

完整试题以及参考答案,请下载附件

游客,如果您要查看本帖隐藏内容请回复

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回帖码请关注我们的公众号获取。

请在电脑访问我们的网站下载答案,手机下载可能会造成答案不正常显示!QQ群1097987313公告有详细步骤。

该答案由网友整理提供,如果答案不符请扫描关注我们的公众号反馈给我们。

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

CopyRight(c)2016 www.daanjia.com All Rights Reserved. 本站部份资源由网友发布上传提供,如果侵犯了您的版权,请来信告知,我们将在5个工作日内处理。
快速回复 返回顶部 返回列表