20.绿化校园,某校计划购进A、B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,够买两种树苗所需费用为y元. (1)y与x的函数关系式为: ; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案.并求出该方案所需费用 . 【考点】一次函数的应用;一元一次不等式的应用. 【分析】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答; (2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案. 【解答】解:(1)y=90(21﹣x)+70x=﹣20x+1890, 故答案为:y=﹣20x+1890; (2)∵购买B种树苗的数量少于A种树苗的数量, ∴x<21﹣x, 解得:x<10.5, 又∵x≥1, ∴x的取值范围为:1≤x≤10,且x为整数, ∵y=﹣20x+1890,k=﹣20<0, ∴y随x的增大而减小, ∴当x=10时,y有最小值,最小值为:﹣20×10+1890=1690, ∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.
完整试题以及参考答案,请下载附件
|