17.略 18.证明:(1) ∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD. 又AB=AC,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE. (2) ∵∠B=∠BAC =α,∴∠DBA+∠BAD= ∠BAD+∠CAE=180°-α. ∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC.∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE (3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE.∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+ ∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF.∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.∴△DEF为等边三角形.
完整试题以及参考答案,请下载附件
|