参考答案与试题解析 一、选择题(每小题4分,共40分) 1.拒绝“餐桌浪费”刻不容缓,据统计全国每年浪费食物总量约为50000000000千克,这个数据用科学记数法表示为( ) A.5×1010 B.0.5×1011 C.5×1011 D.0.5×1010 【考点】科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:将50000000000用科学记数法表示为:5×1010. 故选:A. 2.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是( ) A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0 【考点】根的判别式;一元二次方程的定义. 【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出不等式,且二次项系数不为0,即可求出k的范围. 【解答】解:∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根, ∴△=b2﹣4ac=4+4k>0,且k≠0, 解得:k>﹣1且k≠0. 故选D 3.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为( ) A.﹣10 B.4 C.﹣4 D.10 【考点】根与系数的关系. 【分析】利用根与系数的关系表示出m+n与mn,已知等式左边利用多项式乘多项式法则变形,将m+n与mn的值代入即可求出a的值. 【解答】解:根据题意得:m+n=3,mn=a, ∵(m﹣1)(n﹣1)=mn﹣(m+n)+1=﹣6, ∴a﹣3+1=﹣6, 解得:a=﹣4. 故选C
完整试题以及参考答案,请下载附件
|