答案家

 找回密码
 立即注册
查看: 390|回复: 0

江西省崇仁县2017届_九年级_11月月考数学试卷_参考答案

[复制链接]

1万

主题

1万

帖子

82万

积分

校长

Rank: 9Rank: 9Rank: 9

积分
820632
发表于 2017-1-15 00:56:33 | 显示全部楼层 |阅读模式
15.(1)见解析(2)
【解析】
试题分析:(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;
2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.
证明:(1)∵∠C=90°,△ACD沿AD折叠,
∴∠C=∠AED=90°,
∴∠DEB=∠C=90°,
又∵∠B=∠B,
∴△BDE∽△BAC;
2)由勾股定理得,AB=10.
由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.
∴BE=AB﹣AE=10﹣6=4,
Rt△BDE中,由勾股定理得,
DE2+BE2=BD2,
CD2+42=(8﹣CD)2,
解得:CD=3,
Rt△ACD中,由勾股定理得AC2+CD2=AD2,
32+62=AD2,
解得:AD=.
点评:本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.

完整试题以及参考答案,请下载附件

游客,如果您要查看本帖隐藏内容请回复

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回帖码请关注我们的公众号获取。

请在电脑访问我们的网站下载答案,手机下载可能会造成答案不正常显示!QQ群1097987313公告有详细步骤。

该答案由网友整理提供,如果答案不符请扫描关注我们的公众号反馈给我们。

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

CopyRight(c)2016 www.daanjia.com All Rights Reserved. 本站部份资源由网友发布上传提供,如果侵犯了您的版权,请来信告知,我们将在5个工作日内处理。
快速回复 返回顶部 返回列表