3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( ) A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9 【考点】解一元二次方程-配方法. 【专题】方程思想. 【分析】配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1; (3)等式两边同时加上一次项系数一半的平方. 【解答】解:由原方程移项,得 x2﹣2x=5, 方程的两边同时加上一次项系数﹣2的一半的平方1,得 x2﹣2x+1=6 ∴(x﹣1)2=6. 故选:C. 【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 4.下列关于x的方程有实数根的是( ) A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=0 【考点】根的判别式. 【专题】计算题. 【分析】分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C进行判断;根据非负数的性质对D进行判断. 【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误; B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误; C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确; D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误. 故选:C. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
完整试题以及参考答案,请下载附件
|