A.90° B.80° C.50° D.30° 【考点】旋转的性质. 【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数. 【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB, ∵∠A=40°, ∴∠A′=40°, ∵∠B′=110°, ∴∠A′CB′=180°﹣110°﹣40°=30°, ∴∠ACB=30°, ∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′, ∴∠ACA′=50°, ∴∠BCA′=30°+50°=80°. 故选:B. 【点评】此题主要考查了旋转的性质,关键是熟练掌握旋转前、后的图形全等,进而可得到一些对应角相等. 8.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为( ) A.y=60(300+20x) B.y=(60﹣x)(300+20x) C.y=300(60﹣20x) D.y=(60﹣x)(300﹣20x) 【考点】根据实际问题列二次函数关系式. 【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可. 【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件, 根据题意得,y=(60﹣x)(300+20x), 故选:B. 【点评】此题主要考查了根据实际问题列二次函数解析式,关键是正确理解题意,找出题目中的等量关系,再列函数解析式. 9.在平面直角坐标系xOy中,如果⊙O是以原点O(0,0)为圆心,以5为半径的圆,那么点A(﹣3,﹣4)与⊙O的位置关系是( ) A.在⊙O内 B.在⊙O上 C.在⊙O外 D.不能确定 【考点】点与圆的位置关系;坐标与图形性质. 【分析】根据两点间的距离公式求出AO的长,然后与⊙O的半径比较,即可确定点A的位置. 【解答】解:∵点A(﹣3,﹣4),
完整试题以及参考答案,请下载附件
|