9.将方程x2﹣2x﹣3=0化为(x﹣m)2=n的形式,指出m,n分别是( ) A.1和3 B.﹣1和3 C.1和4 D.﹣1和4 【考点】解一元二次方程-配方法. 【专题】计算题. 【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数. 【解答】解:移项得x2﹣2x=3, 配方得x2﹣2x+1=4, 即(x﹣1)2=4, ∴m=1,n=4. 故选C. 【点评】用配方法解一元二次方程的步骤: (1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可. (2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.
10.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是( ) A.27 B.36 C.27或36 D.18 【考点】等腰三角形的性质;一元二次方程的解. 【专题】分类讨论. 【分析】由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一根,再根据三角形的三边关系判断是否符合题意即可;②当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可. 【解答】解:分两种情况: ①当其他两条边中有一个为3时,将x=3代入原方程, 得32﹣12×3+k=0, 解得k=27. 将k=27代入原方程, 得x2﹣12x+27=0, 解得x=3或9. 3,3,9不能够组成三角形,不符合题意舍去; ②当3为底时,则其他两条边相等,即△=0, 此时144﹣4k=0, 解得k=36. 将k=36代入原方程, 得x2﹣12x+36=0, 解得x=6. 3,6,6能够组成三角形,符合题意. 故k的值为36. 故选:B. 【点评】本题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解.
完整试题以及参考答案,请下载附件
|