一.选择题(共7小题) 1.下列长度的三条线段能组成钝角三角形的是( ) A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7 【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可. 【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意; B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意; C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意; D、因为3+4=7,所以三条线段不能组成三角形,不符合题意. 故选:C. 【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键. 2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是( ) A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3 C.a2=c2﹣b2 D.a:b:c=3:4:6 【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可. 【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形; B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形; C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形; D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形. 故选D. 【点评】本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
完整习题以及参考答案,请下载附件
|