20.∵ AB∥EF,∴ ∠B=∠F.在△ABC和△EFD中,BC=DF,∠B=∠F,AB=EF,∴△ABC≌△EFD,∴ AC=ED 21.∵ OD⊥AB,OE⊥AC,∴ ∠BDO=∠CEO=90°.又∵ ∠BOD=∠COE,BD=CE,∴ △BOD≌△COE,∴ OD=OE.又由已知条件得△AOD和△AOE都是直角三角形,且OD= OE,OA=OA,∴ Rt△AOD≌Rt△AOE,∴ ∠DAO=∠EAO,即AO平分∠BAC 22.相等.理由如下:在△ABC和△ADC中,AB=AD,AC=AC (公共边),BC=DC,∴△ABC≌△ADC,∴∠DAE=∠BAE.在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴ △ADE≌△ABE (SAS),∴BE=DE 23.∵ DF是∠ADC的平分线,∴ ∠CDF=∠ADF.又∵ AD=DC,DF=DF,∴ △ADF≌△CDF,∴ AF=CF,∴ ∠ACF=∠CAF.∵ AF∥CB,∴ ∠CAF=∠ACB,∴ ∠ACF=∠ACB,即CA平分∠BCF 24.(1) 图2中△ACD≌△ABE,∵ △ABC与△AED均为等腰直角三角形,∴ AB=AC,AE=AD,∠BAC=∠EAD=90°,∴ ∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴ △ABE≌△ACD (2) 由(1) △ABE≌△ACD,得∠ACD=∠ABE=45°.又∵ ∠ACB=45°,∴ ∠BCD=∠ACB+∠ACD=90°,∴ DC⊥BE
完整习题以及参考答案,请下载附件
|