4.三角形一边上的中线把原三角形分成两个( ) A.形状相同的三角形 B.面积相等的三角形 C.直角三角形 D.周长相等的三角形 【考点】三角形的角平分线、中线和高. 【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等. 【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形. 故选:B. 【点评】考查了三角形的中线的概念.构造面积相等的两个三角形时,注意考虑三角形的中线. 5.下列说法不正确的是( ) A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部 C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部 【考点】三角形的角平分线、中线和高. 【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解. 【解答】解:A、三角形的中线在三角形的内部正确,故本选项错误; B、三角形的角平分线在三角形的内部正确,故本选项错误; C、只有锐角三角形的三条高在三角形的内部,故本选项正确; D、三角形必有一高线在三角形的内部正确,故本选项错误. 故选C. 【点评】本题考查了三角形的角平分线、中线、高线,是基础题,熟记概念以及在三角形中的位置是解题的关键. 6.下列长度的三根小木棒能构成三角形的是( ) A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【考点】三角形三边关系. 【分析】依据三角形任意两边之和大于第三边求解即可. 【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误; B、因为2+4<6,所以不能构成三角形,故B错误; C、因为3+4<8,所以不能构成三角形,故C错误; D、因为3+3>4,所以能构成三角形,故D正确. 故选:D. 【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键. 7.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.正三角形 【考点】三角形内角和定理. 【分析】根据已知条件和三角形的内角和是180度求得各角的度数,再判断三角形的形状. 【解答】解:∵∠A=20°,
完整习题以及参考答案,请下载附件
|