参考答案与试题解析 一、选择题(共13小题) 1.一元二次方程x2﹣4x+5=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根 【考点】根的判别式. 【分析】把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况. 【解答】解:∵a=1,b=﹣4,c=5, ∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0, 所以原方程没有实数根. 故选:D. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 2.下列关于x的方程有实数根的是( ) A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=0 【考点】根的判别式. 【专题】计算题. 【分析】分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C进行判断;根据非负数的性质对D进行判断. 【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误; B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误; C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确; D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误. 故选:C.
完整习题以及详细参考答案,请下载附件
|