答案家

 找回密码
 立即注册
查看: 1103|回复: 0

2018纳米科学和技术的二次浪潮

[复制链接]

1

主题

1

帖子

41

积分

幼儿园

Rank: 1

积分
41
发表于 2018-8-22 23:33:44 | 显示全部楼层 |阅读模式
  摘要: 在过去的十年里纳米科学的首次浪潮澎湃而过。在此期间, 国际、国内以及香港的学者已向世人证实他们可以采用build-up或build-down的办法制造大量的纳米管、纳米线以及纳米团簇。这些努力已经表明,如果纳米结构能够低廉地制造,那我们就会有更丰硕的收获。尺度小于20纳米的结构会展现非经典的性质,这提供给我们一个用全新的想法来制造功能器件的基础。在半导体工业,制造结构尺寸小于70纳米器件的能力允许器件的持续微型化。在下一个10 年中,纳米科学和技术的另次浪潮将可能来临。在这个新时期, 科学家和工程师需要展示人们对纳米结构的期待功能以及证实他们的进一步的潜力,拥有在纳米结构实际器件的尺寸、组份、有序和纯度上的良好控制能力将实现人们期望的功能。在本文中,我们将讨论纳米科学和技术在新时期里发展所面对的困难和挑战。一系列新的方法将被讨论。我们还将讨论倘若这些困难能够被克服我们可能会有的收获。;   
关键词:纳米科学 纳米技术 纳米管 纳米线 纳米团簇 半导体;
  
Nanoscience and Nanotechnology  the Second Revolution;  

;  
Abstract:    The first revolution of nanoscience took place in the past 10 years. In this period, researchers in China, Hong Kong and worldwide have demonstrated the ability to fabricate large quantities of nanotubes, nanowires and nanoclusters of different materials, using either the build-up or build-down approach. These efforts have shown that if nanostructures can be fabricated inexpensively, there are many rewards to be reaped. Structures smaller than 20nm exhibit non-classical properties and they offer the basis for entirely different thinking in making devices and how devices function. The ability to fabricate structures with dimension less than 70nm allow the continuation of miniaturization of devices in the semiconductor industry. The second nanoscience and nantechnology revolution will likely take place in the next 10 years. In this new period, scientists and engineers will need to show that the potential and promise of nanostructures can be realized. The realization is the fabrication of practical devices with good control in size, composition, order and purity so that such devices will deliver the promised functions. We shall discuss some difficulties and challenges faced in this new period. A number of alternative approaches will be discussed. We shall also discuss some of the rewards if these difficulties can be overcome.   
   
Key words: Nanoscience, Nanotechnology, Nanotubes, Nanowires, Nanoclusters, build-up, build-down, Semiconductor;
  
I.         ; 引言;
; 纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如, 美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念, 例如, 单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据国际半导体技术路向(2001)杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003 年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小, 量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上, 单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发, 还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。;   
  
II.         纳米结构的制备首次浪潮;
有两种制备纳米结构的基本方法:build-up和 build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down 方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。build-up的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、 纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,build-up依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用, 这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

CopyRight(c)2016 www.daanjia.com All Rights Reserved. 本站部份资源由网友发布上传提供,如果侵犯了您的版权,请来信告知,我们将在5个工作日内处理。
快速回复 返回顶部 返回列表