|
; ; 作者:邓鲲鹏 周延杰 严瑜筱
[摘 要] 企业的竞争优势并不取决于信息的拥有量,而是取决于信息的处理利用能力。如何化信息优势为竞争优势,是企业制胜于市场的一个法宝。本文论述了一种信息处理利用的有效工具——数据挖掘方法及其在电子商务中的应用。
[关键词] 数据挖掘 方法 电子商务 应用
随着网络技术和数据库技术的成熟,传统商务正经历一次重大变革,向电子商务全速挺进。这种商业电子化的趋势不仅为客户提供了便利的交易方式和广泛的选择,同时也为商家提供了更加深入了解客户需求信息和购物行为特征的可能性。数据挖掘技术作为电子商务的重要应用技术之一,将为正确的商业决策提供强有力的支持和可靠的保证,是电子商务不可缺少的重要工具。
一、何谓数据挖掘及方法
确切地说,数据挖掘(Data Mining),又称数据库中的知识发现(Knowledge Discovery in Database,KDD),是指从大型数据库或数据仓库中提取隐含的、未知的、非平凡的及有潜在应用价值的信息或模式。它融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。比较典型的数据挖掘方法有关联分析、序列模式分析、分类分析、聚类分析等。它们可以应用到以客户为中心的企业决策分析和管理的各个不同领域和阶段。
1.关联分析。关联分析,即利用关联规则进行数据挖掘。关联分析的目的是挖掘隐藏在数据间的相互关系,它能发现数据库中形如”90%的顾客在一次购买活动中购买商品A的同时购买商品B”之类的知识。
2.序列模式分析。序列模式分析和关联分析相似,但侧重点在于分析数据间的前后序列关系。它能发现数据库中形如”在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A→B→C出现的频度较高”之类的知识,序列模式分析描述的问题是:在给定交易序列数据库中,每个序列是按照交易时间排列的一组交易集,挖掘序列函数作用在这个交易序列数据库上,返回该数据库中出现的高频序列。在进行序列模式分析时,同样也需要由用户输入最小置信度C和最小支持度S。
3.分类分析。设有一个数据库和一组具有不同特征的类别(标记),该数据库中的每一个记录都赋予一个类别的标记,这样的数据库称为示例数据库或训练集。分类分析就是通过分析示例数据库中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其他数据库中的记录进行分类。
4.聚类分析。聚类分析输入的是一组未分类记录,并且这些记录应分成几类事先也不知道,通过分析数据库中的记录数据,根据一定的分类规则,合理地划分记录集合,确定每个记录所在类别。它所采用的分类规则是由聚类分析工具决定的。采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果。
应用数据挖掘技术,较为理想的起点就是从一个数据仓库开始,数据挖掘可以直接跟踪数据并辅助用户快速做出商业决策,用户还可以在更新数据的时候不断发现更好的行为模式,并将其运用于未来的决策当中。 |
|