答案家

 找回密码
 立即注册
查看: 312|回复: 0

2018关于电气自动化控制的刍议

[复制链接]

1

主题

1

帖子

41

积分

幼儿园

Rank: 1

积分
41
发表于 2018-7-16 21:11:52 | 显示全部楼层 |阅读模式
   摘要:电气自动化是电气信息领域的一门新兴学科,但由于和人们的日常生活以及工业生产密切相关,发展非常迅速,现在也相对比较成熟。已经成为高新技术产业的重要组成部分,广泛应用于工业、农业、国防等领域,在国民经济中发挥着越来越重要的作用。本文在总结人工智能在电气设备领域取得成果的基础上,论述了人工智能在电气传动领域的发展概况。其中主要包括模糊控制、神经网络和遗传算法的应用特点及发展趋势等。
http://
   关键词:电气;自动化;控制
   中图分类号:S219.033 文献标识码:B 文章编号
  
  
  Abstract: Electrical automation is a new subject in the field of electrical information, but because people's daily life and industrial production related closely,and is developing very fast, now also is relatively mature. High and new technology industry has become an important component of the widely used in industry, agriculture, national defense and other fields, and in the national economy plays a more and more important role. Based on the summarization of artificial intelligence in the electrical equipment areas on the basis of the achievements, the paper discusses the artificial intelligence in the field of electric transmission development situation. Including fuzzy control, neural network and genetic algorithm application characteristics and the trend of development.
  Keywords: electrical; automation; control
  
  
  
   前言:社会的进步要求生产力更加发达,要求人类的经济生活更加智能化,以节省宝贵的时间去做其它有益的事情。电气自动化控制领域的革新需要人工智能的大力支持,而人工智能在自动化控制方面的优势在这个领域也确实能够得到极大的发挥,促进自动化控制的发展进步。自动化的特征,表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化,因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。在将来,智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用。
  
  一、人工智能控制器的概述
   不同的人工智能控制通常用完全不同的方法去讨论。但AI 控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI 函数近似器比常规的函数估计器具有更多的优势,这些优势如下:
   (1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)
   (2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。例如:模糊逻辑控制器的上升时间比最优PID 控制器快1.5 倍,下降时间快3.5 倍,过冲更小。
   (3)它们比古典控制器的调节容易。
   (4)在没有必须专家知识时,通过响应数据也能设计它们。
   (5)运用语言和响应信息可能设计它们。
   (6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对具体对象必须具体设计。
   (7) 它们对新数据或新信息具有很好的适应性。
   (8)它们能解决常规方法不能解决的问题。
   (9)它们具有很好的抗噪声干扰能力。
   (10)它们的实现十分便宜,特别是使用最小配置时。
   (11)它们很容易扩展和修改。
   总而言之,当采用自适应模糊神经控制器,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置,自学习迅速,收敛快速。
  
  二、人工智能在电气传动控制中的运用
   1、人工智能在直流传动中的运用
   (1)模糊逻辑控制应用
   主要有两类模糊控制器,Mamdani 和Sugeno型。到目前为止只有Mamdani 模糊控制器用于调速控制系统中。限于篇幅这里不详细讨论其中的原因。值得注意的是这两种控制器都有规则库,它是一个if-then 模糊规则集。但Sugeno 控制器的典型规则是“如果x 是A,并且y 是B,那么Z=f(x,y)”。这里A 和B 是模糊集; Z=f (x,y)是x,y的函数,通常是输入变量x,y 的多项式。当f 是常数,就是零阶Sugeno 模型,因此Sugeno 是Mamdani 控制器的特例。
   Mamdani 控制器由下面四个主要部分组成:
  ① 模糊化实现输入变量的测量、量化和模糊化。隶属函数有多种形式。
   ② 知识库由数据库和语言控制规则库组成。开发规则库的主要方法是:把专家的知识和经历用于应用和控制目标;建模操作器的控制行动;建模过程;使用自适应模糊控制器和人工神经网络推理机制。
   ③ 推理机是模糊控制器的核心,能模仿人的决策和推理模糊控制行为。
   ④ 反模糊化实现量化和反模糊化。有很多反模糊化技术,例如最大化反模糊化,中间平均技术等。
   在各种出版物中,介绍了许多被模糊化的控制器,但这应与“充分模糊”控制器完全区分开来,“充分模糊”控制器才是完全意义上的模糊控制器,被模糊化的控制器易于实现,往往通过改造现有古典控制器得以实现,如被模糊化的PI 控制器(FPIC)使用模糊逻辑改变控制器的比例、积分参数,从而使系统的性能得到提高,控制器参数的微小变化可能导致特性的极大提高,被模糊化的控制器参数调整方法如下:P(ti)=P(ti-1)+Kp*CP,I(ti)=I(ti-1)*CI。但如应用“充分”模糊逻辑控制器,系统响应远远优于FPIC 和最优古典PI 控制器,用于最优化常规控制器的计算时间比模糊化控制器所需的时间多得多。因此,使用最小配置的FPIC 控制器是可能的选择之一,事实上,这也是用现有驱动装置实现的最简单方法。
   (2)ANNS 的应用
   过去二十年,人工神经网络(ANNS)在模式识别和信号处理中得到广泛运用。由于ANNS 有一致性的非线性函数估计器,因此它也可有效的运用于电气传动控制领域,它们的优势是不需要被控系统的数学模型,一致性很好,对噪音不敏感。另外,由于ANNS 的并行结构,它很适合多传感器输入运用,比如在条件监控、诊断系统中能增强决策的可靠性,当然,最近电气传动朝着最小化传感器数量方向发展,但有时,多传感器可以减少系统对特殊传感器缺陷的敏感性,不需要过高的精度,也不需要复杂的信号处理。
      误差反向传播技术是多层前馈ANN 最常用的学习技术。如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN 只能实现需要的映射,没有直接的技术选择最优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的最快下降法,输出结点的误差反馈回网络,用于权重调整,搜索最优。输出结点的权重调整迭代不同于隐藏结点的权重调整迭代。通过使用反向传播技术,能得到需要的非线性函数近似值,该算法包括有学习速率参数,对网络的特性有很大影响。
   2、人工智能在交流传动中的应用
   (1)模糊逻辑的应用
   在大多数讨论模糊逻辑在交流传动中运用的文章中,都介绍的是用模糊控制器取代常规的速度调节器,可英国Aberdeen 大学开发的全数字高性能传动系统中有多个模糊控制器,这些模糊控制器不仅用来取代常规的PI 或PID 控制器,同时也用于其他任务。该大学还把模糊神经控制器用于各种全数字高动态性能传动系统开发中。也有一些优秀的文章论述运用模糊逻辑控制感应电机的磁通和力矩。它的输入标定因子是变化的。实验结果也验证了所提方案的有效性。该系统中模糊速度控制器与常规的PI 速度控制器和CRPWM塑变器一起使用,它往往用来补偿可能的惯性和负载转矩的扰动。
   (2) 神经网络的应用
   现如今,有大量文章讨论神经网络在交流电机和驱动系统的条件监测和诊断中的运用。介绍了使用常规反向转波算法的ANN 用于步进电机控制算法的最优化。该方案使用实验数据,根据负载转矩和初始速度来确定最大可观测速度增量。这就需要ANN 学习三维图形映射。该系统与常规控制算法(梯形控制法)相比具有更好的性能,并且大大减少了定位时间,对负载转矩的大范围变化和非初始速度也有满意的控制效果。ANNS 的结构是多层前馈型,运用常规反向传播学习算法。该系统由两个子系统构成,一个系统通过电气动态参数的辩识自适应控制定子电流,另一个系统通过对机电系统参数的辩识自适应控制转子速度。
   最后值得指出的是现在发表的大多数有关ANN 对各种电机参数估计的论文,一个共同的特点是,它们都是用多层前馈ANNS,用常规反向传播算法,只是学习算法的模型不同或被估计的参数不同。
  三、结束语
   总之,电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术所替代。
  
  
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

CopyRight(c)2016 www.daanjia.com All Rights Reserved. 本站部份资源由网友发布上传提供,如果侵犯了您的版权,请来信告知,我们将在5个工作日内处理。
快速回复 返回顶部 返回列表