考点: 切线的判定. 专题: 几何综合题. 分析: (1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A; (2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切. 解答: (1)证明:∵AC为直径, ∴∠ADC=90°, ∴∠A+∠DCA=90°, ∵∠ACB=90°, ∴∠DCB+∠ACD=90°, ∴∠DCB=∠A;
(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切; 解:连接DO, ∵DO=CO, ∴∠1=∠2, ∵DM=CM, ∴∠4=∠3, ∵∠2+∠4=90°, ∴∠1+∠3=90°, ∴直线DM与⊙O相切, 故当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切.
完整试题以及参考答案,请下载附件
|