设为首页
收藏本站
切换到宽版
用户名
Email
自动登录
找回密码
密码
登录
立即注册
快捷导航
网站首页
大学课后答案
毕业设计
高中课后答案
初中课后答案
小学课后答案
赞助我们
搜索
搜索
热搜:
物理答案
英语答案
高数答案
线性代数
本版
帖子
答案家
»
论坛
›
毕业设计
›
通信|电子|电气|自动化
›
2018人工智能控制器在电气化装备中的应用浅析
返回列表
查看:
684
|
回复:
0
2018人工智能控制器在电气化装备中的应用浅析
[复制链接]
2201032
2201032
当前离线
积分
41
1
主题
1
帖子
41
积分
幼儿园
幼儿园, 积分 41, 距离下一级还需 59 积分
幼儿园, 积分 41, 距离下一级还需 59 积分
积分
41
发消息
发表于 2018-8-25 10:21:01
|
显示全部楼层
|
阅读模式
人工智能控制器在电气化装备中的应用浅析
摘要:由于控制简单,直流传动在过去得到了广泛的使用。但由于它们众所周知的限制以及DSP技术的进步,直流传动正逐渐被高性能的交流传动所取代。但最近,许多厂商也推出了一些改进的直流驱动产品,但都没有使用人工智能技术。相信使用人工智能的直流传动技术能得到进一步的提高。智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用。但是,还有很多研究工作要做,现在还只有少数实际应用的例子(学术研究组实现少,工业运用的就更少了),大多数研究只给出了理论或仿真结果,因此,常规控制器在将来仍要使用相当长一段时间。为此,本文论述了人工智能在电气传动领域中的应用。
关键词:神经网络控制模糊神经元控制自适应控制
人工智能一直都处于计算机技术的最前沿,经历了几起几落,长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术所替代。
1 人工智能控制器的优势 http://
不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下:
①它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。②通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。例如:模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍,过冲更小。③它们比古典控制器的调节容易。④在没有必须专家知识时,通过响应数据也能设计它们。⑤运用语言和响应信息可能设计它们。⑥它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对必须具体对象具体设计。⑦它们对新数据或新信息具有很好的适应性。⑧它们能解决常规方法不能解决的问题。⑨它们具有很好的抗噪声干扰能力。⑩它们的实现十分便宜,特别是使用最小配置时。 它们很容易扩展和修改。 http://
总而言之,当采用自适应模糊神经控制器,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置,自学习迅速,收敛快速。
2 人工智能在电气传动控制中的运用
2.1 人工智能在直流传动中的运用
2.1.1 模糊逻辑控制应用 主要有两类模糊控制器,Mamdani和Sugeno型。到目前为止只有Mamdani模糊控制器用于调速控制系统中。限于篇幅本文不详细讨论其中的原因。值得注意的是这两种控制器都有规则库,它是一个if-then模糊规则集。但Sugeno控制器的典型规则是如果X是A,并且y是B,那么Z=f(x,y)。这里A和B是模糊集;Z=f(x,y)是x,y的函数,通常是输入变量x,y的多项式。当f是常数,就是零阶Sugeno模型,因此Sugeno是Mamdani控制器的特例。
Mamdani控制器由下面四个主要部分组成:①模糊化实现输入变量的测量、量化和模糊化。隶属函数有多种形式。②知识库由数据库和语言控制规则库组成。开发规则库的主要方法是:把专家的知识和经历用于应用和控制目标;建模操作器的控制行动;建模过程;使用自适应模糊控制器和人工神经网络推理机制。③推理机是模糊控制器的核心,能模仿人的决策和推理模糊控制行为。④反模糊化实现量化和反模糊化。有很多反模糊化技术,例如,最大化反模糊化,中间平均技术等。 论文代写 http://
在各种出版物中,介绍了许多被模糊化的控制器,但这应与充分模糊控制器完全区分开来,充分模糊控制器才是完全意义上的模糊控制器,被模糊化的控制器易于实现,往往通过改造现有古典控制器得以实现,如被模糊化的论文联盟PI控制器(FPIC)使用模糊逻辑改变控制器的比例、积分参数,从而使系统的性能得到提高,控制器参数的微小变化可能导致特性的极大提高,被模糊化的控制器参数调整方法如下:P(ti)=P(ti-1)+kP*CP,I(ti)=I(ti-1)*CI。但如应用充分模糊逻辑控制器,系统响应远远优于FPIC和最优古典PI控制器,用于最优化常规控制器的计算时间比模糊化控制器所需的时间多得多。因此,使用最小配置的FPIC控制器是可能的选择之一,事实上,这也是用现有驱动装置实现的最简单方法。
2.1.2 ANNS的应用 过去二十年,人工神经网络(ANNS)在模式识别和信号处理中得到广泛运用。由于ANNS有一致性的非线性函数估计器,因此它也可有效的运用于电气了传动控制领域,它们的优势是不需要被控
回复
举报
返回列表
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
立即注册
本版积分规则
发表回复
回帖后跳转到最后一页
CopyRight(c)2016 www.daanjia.com All Rights Reserved. 本站部份资源由网友发布上传提供,如果侵犯了您的版权,请来信告知,我们将在5个工作日内处理。
快速回复
返回顶部
返回列表