[摘要] 目的 ?^察黄芪多糖对2型糖尿病ZDF大鼠血糖及肝脏脂代谢的影响。 方法 选取30只成年雄性ZDF大鼠,随机分为模型组、APS低剂量、APS中剂量组、APS高剂量组和二甲双胍组;另取6只成年雄性ZDF(fa/+)大鼠作为正常组。实验组灌胃给予相应剂量药物,模型组和正常组灌胃给予生理盐水溶液,测定各组ZDF大鼠体重、空腹血糖;肝脂代谢指标:TC、TG、LDL-C、HDL-C含量;肝损伤指标:AST、ALT活性;肝脏病理学检测,从而探讨APS对2型糖尿病ZDF大鼠血糖及肝脏脂代谢的影响。 结果 给药前实验组大鼠体重、空腹血糖显著增高,TC、TG、LDL-C显著增加,符合糖尿病症状,且肝损伤存在一定程度损伤;予APS后各实验组大鼠体重较模型组显著降低(P /6/view-10763071.htm
[关键词] 黄芪多糖;2型糖尿病;脂代谢;肝脏
[中图分类号] R285.5 [文献标识码] A [文章编号] 1673-9701(2017)26-0030-05
Effects of astragalus polysaccharides on blood glucose and liver lipid Metabolism in ZDF Rats with type 2 diabetes mellitus
JI Liqiang1 YAO Xiaolin2 XU Guangyan3
1.Department of Pharmacy, the First People's Hospital of Yuhang District in Hangzhou City, Hangzhou 311100, China; 2.Department of Urology, the First Affiliated Hospital of Zhejiang University Medical College, Hangzhou 310003, China; 3.Department of Pharmacy, PLA 117 Hospital, Hangzhou 310000, China
[Abstract] Objective To observe the effect of astragalus polysaccharides on blood glucose and liver lipid metabolism in ZDF rats with type 2 diabetes mellitus. Methods 30 adult male ZDF rats were selected and randomly divided into model group, APS low dose group, APS middle dose group, APS high dose group and metformin group. 6 adult male ZDF (fa/+) rats were selected as normal group. The rats in the experimental group were treated with corresponding dose of the drug. The model group and normal group were given the same dose of saline solution. The body weight, fasting blood glucose, liver lipid metabolism indexes(TC, TG, LDL-C and HDL-C), liver damage indexes(AST, ALT activity) and liver pathology detection of ZDF rats in each group were determined, explored the influence of APS on blood glucose and liver lipid metabolism in type 2 diabetes ZDF rats. Results The body weight, fasting blood glucose, TC, TG and LDL-C were significantly increased in the experimental group before drug administration, which was accorded with the symptoms of diabetes mellitus and there was a certain degree of damage to liver. After administration of APS, the body weight of each experimental group was significantly lower than that of the model group and that before drug treatment(P [Key words] Astragalus polysaccharides; Type 2 diabetes; Lipid metabolism; Liver
2型糖尿病患者多为脂代谢紊乱,主要包括高甘油三酯血症、高密度脂蛋白降低、低密度脂蛋白增加,慢性高血糖和高脂血症可导致糖尿病并发症,如动脉粥样硬化和脂肪肝,因此研究糖尿病肝脂代谢紊乱具有非常重要的临床价值。黄芪多糖(Astra-galus polys-aecharides,APS)是从中药黄芪中提取的一种大分子生物活性物质,目前研究认为其具有抗氧化与加强免疫力等作用[1-3]。本文通过观察APS对2型糖尿病ZDF大鼠肝脏代谢功能的作用,旨在分析APS在2型糖尿病治疗中的临床价值,以期为防治2型糖尿病提供相关参考。
1 材料与方法
1.1 动物与饲料
选择体重约为(200±20) g成年雄性ZDF大鼠30只,体重约为(200±20)g,成年雄性ZDF(fa/+)大鼠6只,SPF级,购于北京维通利华实验动物有限公司。饲养条件:由浙江中医药大学动物实验研究中心饲养,许可证:SYXK(浙)2016-0115。温度(22±1)°C,湿度50%~70%,光照:150-200Lx,每12小时明暗交替,换风次数15~20次/h。噪音:药学院提供;格华止(盐酸二甲双胍片):上海施贵宝制药公司,批号:1605 089;Rat insulin ELISA Kit 10-1250-01:Mercodia AB生产,批号:21759;生化测定试剂盒:南京建成生物有限公司,批号 20160623;Quo-Test A1C HbA1c Reag-ent Kit:Quotient Diagnostics Ltd生产,批号:020166;全自动生化仪:日本日立株式会所生产,型号:7020;糖化血红蛋白测定仪:Quotient Diagnostics Ltd生产。
1.3 模型诱导
取36只SPF级雄性ZDF(fa/fa)大鼠,适应性喂养1周后,采用高脂饲料诱导,2周后采用眼眶取血方法测定血生化指标,分组给药后,喂普通饲料。另取6只ZDF(fa/+)大鼠,予普通饲料。
1.4 糖尿病ZDF大鼠分组与给药
将ZDF(fa/fa)大鼠按体重和血糖值随机分组,即模型组、APS低剂量(200 mg/kg)组、APS中剂量组(400 mg/kg)组、APS高剂量组(800 mg/kg)、二甲双胍组(200 mg/kg),每组6只,各实验组分别灌胃给予相应剂量药物,模型?M和ZDF(fa/+)正常组大鼠灌胃给予生理盐水溶液10 mL/kg,每日1次,连续8周。
1.5 测定指标
分别在给药前和末次给药后,8 h禁食不禁水,于次日清晨空腹眼眶取血。给药结束后心脏取血处死,分离血清后分别测定TC、TG、AST、ALT、LDL-C、HDL-C,由浙江中医药大学动物实验中心测定;取肝脏组织,4%甲醛固定,制备病理切片,由浙江中医药大学动物实验中心完成病理片拍摄。
1.6 统计学方法
采用SPSS17.0软件进行统计分析,计量资料以均数±标准差(x±s)表示。计量资料若方差齐,则采用LSD检验两两比较;若方差不齐,其差异性则采用H-G检验,P 2.5?S芪多糖对糖尿病ZDF大鼠肝脏病理结构的影响
见封三图3。正常组ZDF大鼠肝脏细胞分布均匀,形态正常,肝细胞索呈放射状排列,细胞无明显病变现象,见封三图3A。而模型组ZDF大鼠肝脏细胞核皱缩,胞质呈网丝状,细胞间存在明显脂滴沉积,见封三图3B。C、D黄芪多糖组大鼠肝脏部分细胞内见细小脂滴空泡化,肝细胞索呈放射状排列,见封三图3C和封三图3D,其中黄芪多糖高剂量组大鼠肝脏细胞形态正常,肝小叶结构正常,肝细胞索呈放射状排列,见封三图3E。二甲双胍组大鼠肝脏部分细胞内存在脂滴空泡化,肝细胞索状结构清晰,见封三图3F。
3 讨论
糖尿病是继癌症、心脑血管疾病之后危害人类健康的第三大疾病。据国际糖尿病联盟(International Diabetes Federation,IDF)统计,2013年全球糖尿病患者总数约为3.82亿,预计2035年将达到5.92亿[4]。2型糖尿病的发病原因和机制非常复杂,包括葡萄糖代谢、脂代谢和能量代谢紊乱,因胰岛β细胞功能缺陷而导致的胰岛素分泌减少(或相对减少)或由于胰岛素抵抗(或两者共同存在)所致的胰岛素在机体内调控葡萄糖代谢能力的下降[5]等。针对发病原因,目前临床上广泛应用于治疗2型糖尿病的药物有双胍类、磺酰脲类、噻唑烷二酮类、α-葡萄糖苷酶抑制剂等,但有部分患者服用后会产生毒副作用,如肝毒性、低血糖症、体重增加、浮肿、胃肠道功能紊乱[6]等,因此患者用药受到限制[7]。
糖尿病动物模型是用于研究糖尿病及其并发症发生发展的分子机制及新的治疗措施的重要手段[8]。本实验采用的是ZDF(Zucker diabetic fatty rat)自发性糖尿病大鼠模型――一种由于编码瘦素Leprfa等位基因突变形成的自发性纯合子糖尿病大鼠,其特点是具有肥胖、高胰岛素血症、高血糖以及高甘油三酯和高脂肪酸等特征,病理生理与人类糖尿病相似。作为FDA糖尿病药物研发指南所述的2型糖尿病常用动物模型之一[9],目前作为研究糖尿病的病因和发病机制研究的动物载体被国内外广泛应用。其在6周龄时便出现胰岛素抵抗的特点,10~12周龄时表现出稳定的高血糖状态[10]。本实验采用高脂饲料诱导2周后,造模大鼠体重显著增加,空腹血糖≥16.7 mmol/L,而且TC、TG和LDL-C明显升高,肝脏生化指标ALT、AST显著升高,肝脏病理亦符合糖尿病肝脏脂代谢紊乱标准。
中药黄芪是常用的补气中药,具有补气健脾、益卫固表、升阳举陷、利水消肿、托毒生肌等作用[11]。研究发现,含黄芪的复方、黄芪单药或黄芪提取液能降低血黏度和甘油三酯,提高血管中NO水平,减少内皮损伤,改善微循环,在糖尿病足、糖尿病微血管病变的治疗方面有明显的疗效[12-13],目前在糖尿病、心血管疾病的临床辅助治疗中中药黄芪已广泛应用。黄芪多糖(Astragalus polysaccharide,APS)是黄芪中最有效的成分之一,其主要生物活性表现为增强机体免疫功能、抗肿瘤、抗病毒、抗氧化、抗衰老、神经修复、降低脑缺血损伤等功效[14]。
肝脏是人体代谢的主要器官,是糖、蛋白质和脂肪三大代谢的中心[15],直接参与糖在体内的代谢过程,在机体的储存、分布和血糖的调节方面起重要作用,与2型糖尿病的发生和发展密切相关。本实验HE染色结果显示,正常组ZDF大鼠肝脏细胞分布均匀,细胞无明显病变现象,而模型组大鼠细胞核皱缩,细胞间存在明显脂滴积累,而经黄芪多糖干预后脂滴积累现象均出现一定程度的改善,表明黄芪多糖在一定程度上可改善肝脏脂滴沉积。
糖尿病肝脂代谢紊乱中心环节为胰岛素抵抗[16]。当机体的胰岛素受体发生缺陷,体内的糖元无法有效利用,胰岛素代偿性分泌增加,脂肪的抗脂解作用减少,脂蛋白酶的活性增加,脂肪分解加速,血浆FFA和肝脏合成TG增加,从而促进机体发生肝脏胰岛素抵抗[17-19]。且TC、TG水平增高与2型糖尿病病情和病程有关。本实验研究表明,ZDF模型大鼠TC、TG含量增加,同时肝脏ALT、AST活力异常升高,表明2型糖尿病可导致脂代谢紊乱,且可导致肝细胞实质损伤。黄芪多糖能明显降低2型糖尿病ZDF大鼠的血糖、TC、TG和HDL-C含量,表明黄芪多糖能够调节降血糖和改善脂代谢紊乱作用。
血清AST、ALT等酶的活性可灵敏反映肝细胞损伤、坏死的程度[20],本文中ZDF模型大鼠出现AST、ALT增高趋势,其中ALT显著性增加,表明此时ZDF模型大鼠肝脏出现一定程度损伤。黄芪多糖给药后,AST、ALT含量明显低于模型组,表明黄芪多糖能保护肝脏细胞,挽救肝损伤。
综上所述,黄芪多糖可显著改善ZDF大鼠体重、空腹血糖、TC、TG、LDL-C含量,降低肝损伤特异性指标AST、ALT的含量,减轻ZDF大鼠肝脏细胞空泡程度,改善肝脏脂肪滴沉积,其机制可能与改善肝脏脂代谢紊乱和对抗糖尿病引起的肝损伤有关,但具体机制仍需要进一步研究。
[参考文献]
[1] Tu S,Shao A,Ren L,et al. Angiogenesis effect of Astragalus polysaccharide combined with endothelial progenitor cells therapy in diabetic male rat following experimental hind limb ischemia[J]. Chin Med J(Engl),2014, 127(11):2121-2128.
[2] Zhao L,Wu H,Zhao A,et al. The in vivo and in vitro study of polysaccharides from a two-herb formula on ulcerative colitis and potential mechanism of action[J]. Journal of Ethnopharmacology,2014,153(1):151-159. [3] Kai Z,Michela P,Antonio P,et al. Biological active ingredients of traditional Chinese herb Astragalus membranaceus on treatment of diabetes: a systematic review[J].Mini Reviews in Medicinal Chemistry,2015,15(4):315-329.
[4] Guariguata L,Whiting DR,Hambleton I,et al. Global estimates of diabetes prevalence for 2013 and projections for 2035[J]. Diabetes Research and Clinical Practice,2014, 103(2):137-149.
[5] Asante E. Interventions to promote treatment adherence in type 2 diabetes mellitus[J]. British Journal of Community Nursing,2013,18(6):267-274.
[6] Agarwal AA,Jadhav PR,Deshmukh YA. Prescribing pattern and efficacy of anti-diabetic drugs in maintaining optimal glycemic levels in diabetic patients[J]. Journal of Basic and Clinical Pharmacy,2014,5(3): 79.
[7] Yang W,Lu J,Weng J,et al. Prevalence of diabetes among men and women in China[J]. New England Journal of Medicine,2010,362(12):1090-1101.
[8] Al-Awar A,Kupai K,Veszelka M,et al. Experimental diabetes mellitus in different animal models[J]. Journal of Diabetes Research,2016.
[9] FDA. Guidance for industry diabetes mellitus: developing drugs and therapeutic biologics for treatment and prevention [EB/OL]. 2008[2014-09-05]. http://www. fda.gov/downloads/Drugs/Guidances/ ucm071624.pdf.
[10] Peterson RG,Shaw WN,Neel MA,et al. Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus[J]. ILAR Journal,1990,32(3):16-19.
[11] 段??,李会军,闻晓东,等. 黄芪治疗糖尿病研究进展[J].中国新药杂志,2013,22(7):776-781.
[12] Yao XM,Liu YJ,Wang YM,et al. Astragaloside IV prevents high glucose-induced podocyte apoptosis via downregulation of TRPC6[J]. Molecular Medicine Reports,2016,13(6):5149-5156.
[13] 王光浩,张敬芳,杨雪琴. 黄芪注射液治疗糖尿病肾病的实验研究[J]. 微循环学杂志,2007,17(1): 20-21.
[14] Xie JH,Jin ML,Morris GA,et al. Advances on bioactive polysaccharides from medicinal plants[J]. Critical Reviews in Food Science and Nutrition,2016,56(sup1):S60-S84.
[15] Chaumontet C,Even PC,Schwarz J,et al. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats[J]. British Journal of Nutrition,2015,114(8):1132-1142.
[16] Korolczuk A. Progranulin,a new adipokine at the crossroads of metabolic syndrome,diabetes,dyslipidemia and hypertension[J]. Current Pharmaceutical Design,2017,23(10): 1533-1539.
[17] Tao R,Xiong X,Harris RA,et al. Genetic inactivation of pyruvate dehydrogenase kinases improves hepatic insulin resistance induced diabetes[J]. PLoS One,2013,8(8): e71997.
[18] Guo R,Nair S,Zhang Y,et al. Adiponectin deficiency rescues high-fat diet-induced hepatic injury,apoptosis and autophagy loss despite persistent steatosis[J]. International Journal of Obesity,2017,14(9):1403.
[19] Jiang W,Li D,Jiang T,et al. Protective effects of Chaihu Shugan San on nonalcoholic fatty liver disease in rats with insulin resistance[J]. Chinese Journal of Integrative medicine,2016,5(10):1-8.
[20] Van Beek JH,De Moor MH,De Geus EJ,et al. The genetic architecture of liver enzyme levels:GGT,ALT and AST[J]. Behavior Genetics,2013,43(4):329-339.
(收稿日期:2017-06-04)