[摘要] 目的 探?2型糖尿病胰岛素抵抗大鼠前列腺微血管新生与良性前列腺增生症发生发展的关系。 方法 ①正常对照组大鼠(Normal组,n=15):8~10周龄正常雄性Wistar大鼠;②单纯良性前列腺增生组大鼠(BPH组,n=15):手术去势后外源性给予高剂量雄激素;③胰岛素抵抗前列腺增生组大鼠(GK+BPH组,n=15):8~10周龄自发型非肥胖型2型糖尿病Wistar大鼠(GK大鼠),手术去势后外源性给予高剂量雄激素;④胰岛素抵抗前列腺增生血糖干预组大鼠(GK+BPH+PH组,n=15):8~10周龄GK大鼠手术去势后外源性给予高剂量雄激素,同时给予盐酸吡格列酮灌胃。光化学法检测大鼠空腹血糖水平;ELISA双抗体夹心法检测大鼠血清胰岛素水平及前列腺DHT含量;real-time PCR法检测大鼠前列腺VEGF、Ang-1、Ang-2 mRNA表达量;免疫组化S-P法检测前列腺组织CD31表达并根据阳性结果计数MVD。 结果 ①GK+BPH、GK+BPH+PH组空腹血糖水平及胰岛素抵抗指数高于Normal组及BPH组(P0.05)。BPH组、GK+BPH组、GK+BPH+PH组前列腺组织中DHT含量与Normal组相比明显增高(PGK+BPH+PH组>BPH组>Normal组,组间差异有统计学意义(P /6/view-10687682.htm
[关键词] 胰岛素抵抗;前列腺增生症;血管内皮生长因子;血管生成素;微血管密度
[中图分类号] R691.9 [文献标识码] A [文章编号] 1673-9701(2018)08-0035-05
Experiment of microvascular angiogenesis of prostate in rats with insulin resistance
MI Yang1 YUAN Xiaobin2 ZHANG Bin2 WANG Dongwen2 ZHANG Xuhui2
1.First School of Clinical Medicine of Shanxi Medical University, Taiyuan 030001, China; 2.Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
[Abstract] Objective To investigate the association between the microvascular angiogenesis and the occurrence and progress of benign prostatic hyperplasia(BPH) in type-2 diabetic rats with insulin resistance(IR). Methods ①Rats of normal group(n=15): normal male Wistar rats aged 8 to 10 weeks. ②Rats of BPH group(n=15): high-dose exogenous androgen was given after surgical castration. ③Rats with IR and BPH(GK+BPH) group(n=15): high-dose exogenous androgen was given to spontaneous non-obese type-2 diabetic Wistar rats(GK rats) aged 8 to 10 weeks. ④Rats of IR and BPH with blood glucose intervened(GK+BPH+PH) group(n=15): high-dose exogenous androgen was given to GK rats aged 8 to 10 weeks and pioglitazone hydrochloride was given by intragastric administration. The level of fasting blood glucose in rats was assessed by photochemical method. The levels of serum insulin and DHT in prostate of rats were assessed by double antibody sandwich ELISA. The expression of VEGF, Ang-1 and Ang-2 in prostate of rats was assessed by real-time. The expression of CD31 in prostate tissue was assessed by the S-P immunohistochemical method and MVD was counted based on the positive results. Results ①The level of fasting blood glucose and the IR index in GK+BPH group and GK+BPH+PH group were higher than those in normal group and BPH group(P0.05). The level of DHT in the prostate tissue of BPH group, GK+BPH group and GK+BPH+PH group was higher than that in normal group(PGK+BPH+PH group>BPH group>Normal group, with statistical differences between each other(P [Key words] Insulin resistance; Prostatic hyperplasia; Vascular endothelial growth factor; Angiogenin; Microvessel density
雄激素是前列腺组织中重要的激素,目前研究认为其与良性前列腺增生症(benign prostatic hyperplasia,BPH)的发生发展密不可分[1]。前列腺血管内皮细胞是雄激素在前列腺组织中发挥生物学效应的主要靶点之一[2,3],前列腺增生腺体中的血管过度生成可能与腺体的增生密切相关[4]。相关研究已证实,2型糖尿病合并胰岛素抵抗(insulin resistance,IR)患者前列腺生长速度及前列腺体积与单纯BPH患者相比明显增高,但其具体机制尚未明确[5]。本研究通过构建2型糖尿病胰岛素抵抗合并BPH及单纯BPH大鼠模型,比较各模型组与正常大鼠前列腺组织中(dihydrotestosterone,DHT)、血管生成素-1(Angiopoietin-1,Ang-1)、血管生成素-2(Angiopoietin-2,Ang-2)、血管内皮生长因子(vascular endothelial growth factor,VEGF)及微血管密度(microvessel density,MVD)计数差异,探讨2型糖尿病胰岛素抵抗与BPH发生发展的相关性。
1材料与方法
1.1 实验动物及饲养条件
2型糖尿病胰岛素抵抗大鼠模型:使用8~10周龄,体重250~300 g,SPF级雄性非胰岛素依赖型非肥胖型2型糖尿病Wistar大鼠(GK大鼠),购自于江苏省常州市卡文斯实验动物有限公司,许可证号SCXK(苏)2011-003;其余各组选用同周龄SPF级雄性Wistar大鼠,购自于山西医科大学动物实验中心,许可证号:SYXK(晋)2003-013。所有大鼠均饲养于山西医科大学动物实验中心SPF级实验室,标准化饲养房喂养,饲喂标准颗粒饲料,自由饮水。饲养环境:T 18℃~22℃,H 50%~70%,日照时间为8:00-20:00。
1.2 主要试剂
盐酸吡格列酮(Sigma公司,PHR1632);丙酸睾酮(Sigma公司,BP720);苯甲酸雌二醇(Sigma公司,E8875);大鼠胰岛素ELISA定量试剂盒(Thermo Fisher公司,ERINS);大鼠DHT ELISA定量试剂盒(IBL公司,DB52021);兔抗大鼠CD31单克隆抗体(R&D公司,AF3628);Real-time RT PCR试剂盒(Takara公司,RR037A);罗氏活力型微量血糖仪及试纸。
1.3 方法
1.3.1 单纯BPH大鼠造模 8~10周龄Wistar大鼠行去势手术,术前8 h禁食,不禁水,取阴囊正中约1.5 cm横切口,分别游离左、右侧精索,自附睾头部近端结扎精索,切除双侧睾丸及附睾后还纳精索残端,逐层缝合切口。术后第3天起,每日皮下注射丙酸睾酮 3 mg/kg,苯甲酸雌二醇0.03 mg/kg,4周后诱导成模。
1.3.2 胰岛素抵抗合并BPH造模 8~10周龄GK大鼠随机验证空腹血糖≥8.0 mmol/L后,按照上述1.3.1中方法诱导BPH模型。
1.3.3 胰岛素抵抗合并BPH血糖干预组造模 8~10周龄GK大鼠随机验证空腹血糖≥8.0 mmol/L后,经口灌胃给予盐酸吡格列酮20 mg/(kg?d),并随即检测空腹血糖稳定≤6.5 mmol后,按照上述1.3.1中方法诱导BPH模型。
1.3.4 实验分组及给药方法 ①正常对照组大鼠(Normal组,n=15):8~10周龄正常雄性Wistar大鼠;②单纯良性前列腺增生组大鼠(BPH组,n=15):手术去势后外源性给予高剂量雄激素;③胰岛素抵抗前列腺增生组大鼠(GK+BPH组,n=15):8~10周龄自发型非肥胖型2型糖尿病Wistar大鼠(GK大鼠),手术去势后外源性给予高剂量雄激素;④胰岛素抵抗前列腺增生血糖干预组大鼠(GK+BPH+PH组,n=15):8~10周龄GK大鼠给予盐酸吡格列酮灌胃,同时行手术去势后外源性给予高剂量雄激素。
1.4 观察指标及方法
(1)大鼠空腹血糖测定:禁食8 h后鼠尾尖断尾采血,使用微量血糖仪测定。(2)胰岛素抵抗指数(HOMA-IR)测定:采用鼠尾静脉取血,1000×g离心10 min后吸取上清,按照大鼠胰岛素ELISA定量试剂盒说明书操作,于450 nm波长下测定各标准品及样品吸光光度值,根据标准曲线及样品所测得的OD值,计算出相应Insulin含量。HOMA-IR=空腹血糖(FGP,mmol/L)×空腹胰岛素(FINS,mL U/L)/22.5。(3)大鼠前列腺组织中DHT测定:前列腺组织100 mg经液氮冷冻,加入1 mL 0.9% NaCl生理盐水,1000×g离心10 min后吸取上清,按大鼠DHT ELISA定量试剂盒说明书操作,于450 nm波长下测定各标准品及样品吸光光度值,根据标准曲线及样品所测得的OD值,计算出相应样本DHT含量。(4)大鼠前列腺组织Ang-1、Ang-2、VEGF检测:前列腺组织约100 mg,经液氮冷冻后研磨,加入1 mL Trizol提取总RNA,严格按试剂盒说明书方法首先反转录合成cDNA,通过SYBR Premix Ex TaqⅡ实时荧光定量PCR检测Ang-1、Ang-2、VEGF的表达,大鼠β-actin作为内参,应用ABI 7500荧光定量PCR进行检测。反应条件如下:①反转录 37℃ 15 min→85℃ 5 s→4℃;②Real time PCR stage 1预变性cycle 1 95℃ 30 s;stage 2 PCR反应cycle 40 95℃ 5 s→60℃ 30 s。real-time PCR引物见表1。(5)前列腺CD31检测并根据阳性结果计数MVD值:前列腺组织经10%中性福尔马林固定,脱水后石蜡包埋后切片,石?切片经脱蜡、复水后采用SP法免疫组化染色,3%过氧化氢浸泡10 min,山羊血清室温封闭10 min,加一抗CD31单克隆抗体4℃过夜孵育,加二抗及辣根过氧化物酶37℃孵育30 min,DAB显色,苏木素复染。各步骤间使用PBS冲洗,阴性对照使用PBS作为一抗。前列腺间质区成棕黄色染色的单个内皮细胞或内皮细胞簇,均作为一个血管计数,肌层较厚及管腔面积大于8个红细胞直经的血管不计数;每张染色切片首先在100倍视野下选择3个血管最多的前列腺间质区,其后在200倍视野下以CD31阳性表达血管结果进行MVD计数。每例标本分别随机计数5个视野,取平均值。 本??验结果提示,在GK+BPH组与GK+BPH+PH组大鼠前列腺组织中,DHT含量较单纯BPH组大鼠增高,且应用胰岛素增敏剂盐酸吡格列酮干预后的GK+BPH+PH组大鼠,前列腺DHT含量较GK+BPH组减低,这一结果与既往文献报道相符合。对GK大鼠胰岛素抵抗指数与前列腺DHT含量行相关性分析结果提示,胰岛素抵抗指数与前列腺DHT含量呈正相关,DHT在大鼠前列腺组织中的含量随胰岛素抵抗指数增加而增加。检测各组大鼠前列腺VEGF、Ang-1、Ang-2,结果与DHT含量在各组表达量趋势一致,即GK+BPH组>GK+BPH+PH组>BPH组>Normal组。应用CD31标记大鼠前列腺组织血管内皮后进行MVD计数,结果提示GK+BPH组大鼠前列腺血管新生高于其余各组;GK+BPH+PH组血管新生高于单纯BPH组及正常对照组,低于GK+BPH组;单纯BPH组大鼠前列腺血管新生程度高于Normal组。MVD计数结果与Ang-1、Ang-2及VEGF在各组表达趋势相符。
本文结果提示2型糖尿病伴胰岛素抵抗时,高胰岛素血症可能导致前列腺组织中DHT表达量增高,而DHT含量的增加可上调前列腺组织VEGF,Ang-1、Ang-2等血管生成因子的表达水平,促进前列腺组织局部血管新生,从而加速BPH的发生、发展。
本研究阐释2型糖尿病胰岛素抵抗患者合并BPH时疾病进程明显加快的可能原因,为此类患者早期使用5α还原酶抑制、更积极应用胰岛素增敏剂通过调控胰岛素敏感性控制血糖水平、干预BPH疾病的进展提供实验依据。
[参考文献]
[1] Tianjing Lu,Wen-jye Lin,Kouji Izumi,et al. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia(BPH)development[J]. Molecular Endocrinology(Baltimore,Md.),2012,26(10): 1707-1715.
[2] Franck-Lissbrant I,H??]ggstr??im S,Damber-J E,et al. Testosterone stimulates angiogenesis and vascular regrowth in the ventral prostate in castrated adult rats[J]. Endocrinology, 1998,139(2):451-456.
[3] Montico Fábio,Hetzl Amanda-Cia,C??\ndido Eduardo-Marcelo,et al. Angiogenic and tissue remodeling factors in the prostate of elderly rats submitted to hormonal replacement[J]. The Anatomical Record,2013,296(11):1758-1767.
[4] Vikram A,Jena G-B,Ramarao P. Increased cell proliferation and contractility of prostate in insulin resistant rats:Linking hyperinsulinemia with benign prostate hyperplasia[J]. The Prostate,2010,70(1):79-89.
[5] Cuneyt Ozden,Levent Ozdal-Ozdem,Guvenc Urgancioglu,et al. The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia[J]. European Urology,2006,51(1):199-203.
[6] 刘颖,屈晓冰,董莉妮,等. 老年病科门诊良性前列腺增生症患者诊治现况[J]. 中国老年学杂志,2010,30(4):522-525.
[7] 汪会琴,胡如英,武海滨,等. 2型糖尿病报告发病率研究进展[J]. 浙江预防医学,2016, 28(1):37-39,57.
[8] Nandeesha H,Koner-B C,Dorairajan-L N,et al. Hyperinsulinemia and dyslipidemia in non-diabetic benign prostatic hyperplasia[J]. Clinica Chimica Acta;International Journal of Clinical Chemistry,2006,370(1):89-93.
[9] Guimin Wang,Bruce Kovalenko,Yili Huang,et al. Vascular endothelial growth factor and angiopoietin are required for prostate regeneration[J]. The Prostate, 2007, 67(5):485-499.
[10] Shabisgh A,Tanji N,D'Agati V,et al. Early effects of castration on the vascular system of the rat ventral prostate gland[J]. Endocrinology,1999,140(4):1920-1926.
[11] Júnior José-Paulo-Pizzol,Sasso-cerri Estela,Cerri Paulo-Sérgio. Apoptosis and reduced microvascular density of the lamina propria during tooth eruption in rats[J]. Journal of Anatomy,2015,227(4):487-496.
[12] Prins-G S,Birch L,Greene-G L. Androgen receptor localization in different cell types of the adult rat prostate[J]. Endocrinology,1991,129(6):3187-3199.
[13] Burchardt M,Burchardt T,Chen-M W,et al. Vascular endothelial growth factor-A expression in the rat ventral prostate gland and the early effects of castration[J]. The Prostate,2000,43(3):184-194.
[14] Junyeop Lee,Dae-young Park,Young Park-Do,et al. Angiopoietin-1 suppresses choroidal neovascularization and vascular leakage[J]. Investigative Ophthalmology & Amp;Visual Science,2014,55(4):2191-2199.
[15] Koh Gou-Young. Orchestral actions of angiopoietin-1 in vascular regeneration[J]. Trends in Molecular Medicine,2013,19(1):31-39.
(收稿日期:2017-11-15)