答案家

 找回密码
 立即注册
查看: 251|回复: 0

2018中国经济增长与环境污染关系的分省面板协整模型分析——一个基于

[复制链接]

1

主题

1

帖子

41

积分

幼儿园

Rank: 1

积分
41
发表于 2018-7-14 14:04:15 | 显示全部楼层 |阅读模式
  【摘要】本文在效用函数的基础上建立的扩展的EKC模型的面板协整分析的随机效应模型表明:我国分省的工业废水、废气、固体废弃物的EKC曲线形式不是“U”、”倒U”以及”N”形的任何一种;分省经济增长和工业三废的排放具有因果关系,但是经济发达和不发达地区工业三废的排放标的显著不同;产业结构尤其是第二产业比重的增加会增加工业三废的排放量;人口密度对工业三废排放具有挤出效应;工业三废排放对国家污染治理投入具有“倒逼机制”。北京、上海的环境有持续好转的迹象,河南的环境呈现持续恶化的状态。彻底解决我国环境污染问题需要合理有效的制度设计,制度的客观约束大于人类行为的主观约束方能有效治理环境污染问题。
关键词:经济增长;环境污染;扩展的EKC模型;面板协整
Abstract: This paper, based on utility function, builds an extended EKC model. Through the analysis of panel cointegration, the conclusion is that the EKC curves of industrial waste water, waste gas is not any kind of “U-shape”, “inverted U-shape” or “N-shape”. There is causality between economic growth and discharge of industrial wastes, but the discharge standard of developed areas is remarkably different from that of under-developed areas; the differences of industrial structure have an effect on the discharge of wastes, especially when the proportion of secondary industry in the national economy is large, the discharge of industrial wastes will be more; the population density has an crowding-out effect on industrial wastes; the discharge of industrial wastes have a mechanism to force the government devote more to the pollution. The environments of Beijing and Shanghai are taking a favorable turn, while the situation in He’nan province is still worsening. To solve the problem of environmental pollution thoroughly, a rational and effective institution is needed. Only when the restraint of institution from objective point is great than the restraint of human’s own behavior, can the environmental problem be solved.
Key words: economic growth; environmental pollution; extended EKC model; panel co-integration
1971年《罗马俱乐部报告》出台之后,关于经济是否可持续发展一度成为广泛的争议话题,随后的讨论从资源枯竭问题转向了环境污染问题。目前经济学界一般用环境库兹涅茨曲线(Environmental Kuznets Curve, EKC)表示经济增长与环境的关系。该曲线是指当收入超过一定的临界值时,按照人均值度量的经济活动的环境效应幅度会随着收入的增加而下降,就是说人均收入和环境污染呈现的是倒U型曲线关系。在人均收入水平比较低的情况下,随着人均收入的提高,环境污染加剧;Grossman and Krueger(1991;1994)研究表明,在人均收入达到一定水平 ,一般为 4000-5000 美元(1985年的美元计价),人均收入的提高将伴随着环境状况的改善。继Grossman和Krueger之后,许多实证研究结果都表明,在大多数环境质量指标与人均收入之间存在着倒U型的关系。Selden和Song(1994;1995)考察了四种重要的空气污染物(即SO2、CO2、NO2和SPM)排放问题,发现它们与收入之间都存在倒U型的关系。Xepapadeas和Amri(1995)证实对于大气中SO2的浓度也存在同样的结论。Grossman and Krueger(1995)使用比1994年的研究范围更广的环境质量指标数据进行了跨国面板模型分析,没有发现环境质量会随经济增长而持续恶化的证据,相反,他们选取的大多数环境指标在经济增长的初始阶段出现恶化,而随着经济增长呈现出稳定改善的过程。
随着人们生活水平的提高,将会追求更高的生活质量,因此对于环境污染的问题也会越来越受到重视,研究该问题的学者也越来越多。本文尝试建立一个基于效用函数扩展的环境库兹涅茨曲线,应用面板单位根和面板协整理论,分析我国分省的环境库兹涅茨曲线——我国分省经济增长与环境污染关系问题。
一、文献综述
对于中国经济增长和环境污染关系问题的研究,主要体现在两个方面:一种是对某一个省市的研究,主要适用OLS方法进行模型估计,但是很少见到对时间序列进行单位根和协整检验问题,然后根据回归结果分析EKC模型是否存在,进而提出相关的政策建议;第二种是利用分省面板模型回归分析,主要是使用Hausman检验判断使用固定效应模型还是随机效用模型,未曾见到对于面板数据进行单位根和面板协整检验问题。第一种情况的研究成果众多;第二种情况的研究成果很少,主要有:包群、彭水军、阳小晓(2005);刘燕、潘杨、陈刚(2006);于峰、齐建国、田晓林(2006);李达、王春晓(2007)。
包群、彭水军、阳小晓(2005)利用1996-2002年期间我国30个省份的面板数据,对我国经济增长与包括水污染、大气污染与固体污染排放在内的6类环境污染指标之间的关系进行了检验,实证结果发现倒U型EKC关系很大程度上取决于污染指标以及估计方法的选取,存在以相对低的人均收入水平越过环境倒U型曲线转折点的可能。
刘燕、潘杨、陈刚(2006)使用1990-2003年中国的省级面板数据对中国的经济增长与环境污染关系进行了计量分析,同时考察了中国的对外开放政策对环境质量的影响。结果表明中国的经济增长同环境污染之间并不存在简单的倒U型曲线关系,中国的经济增长与工业废水之间表现为一种倒N型曲线关系,与工业废气之间表现为N型曲线关系,与工业固体废物之间表现一种倒U型曲线关系。同时,分析表明出口同中国的环境污染之间存在显著的正相关关系;而外商直接投资与中国的环境污染之间却存在显著的负相关关系。
于峰、齐建国、田晓林(2006)在 Stern(2002)模型的基础上,以 SO2 排放量表征环境污染水平,对 1999—2004 年间除西藏、山西和贵州以外的我国28 个省、自治区及直辖市的面板数据进行回归分析,结果显示经济规模扩大、产业结构和能源结构变动加剧了我国环境污染,生产率提高、环保技术创新与推广降低了我国环境污染。并估算了这五要素对环境质量影响的各自实际贡献率。
李达、王春晓(2007)利用1998-2004年间我国30个省份的面板数据,研究了3种大气污染物和经济增长之间的关系。实证结果表明3种大气污染物与经济增长之间不存在倒U型环境库兹涅茨曲线。二氧化硫排放与经济增长之间呈倒N型曲线,与多数研究结果不相符;同时,第二产业比重、经济增长速度、单位GDP能耗和环境政策强度四个解释变量总体上对3个大气污染物的排放具有显著影响。
从上述文献可以看出,随着经济发展水平的提高,研究经济增长与环境污染关系的文章也似乎越来越多。上述丰富的研究成果对于我国或者某些省份和城市制定合理的环境措施,减少环境污染总量,降低环境污染程度都具有十分重要的指导意义。但是上述研究成果共同的遗憾是:一是模型简单,没有考虑到影响环境污染的其他因素,仅限于经济增长对于环境污染影响的研究和回归分析;二是实证分析手段和方法受到计量经济学理论和发展水平的制约。基于此,本文从上述两个方面进行补充和扩展分析,基于效用函数理论模型,建立中国的EKC模型,使用面板单位根和面板协整分析技术进行研究,希望结论能符合中国国情和实际,对于中国经济增长、环境污染和治理提出有针对性和有益的建议。
二、模型的建立与微观基础
考察经济增长与环境污染的关系问题,首先要分析两个变量的传导路径,因此要从微观传递机制入手,进而分析宏观层次上变量的依赖关系。
(一)模型的微观基础
我们首先建立一个代表性家庭个体的函数模型,然后将它一般化推广,形成一个包含更广泛个体的函数模型。
1.代表性个体的效用函数与污染函数。
假设一个代表性家庭消费C会导致污染H,因此家庭的效用函数为:
家庭消费越多,效用越高,因此 ;而污染越高,效用越低,因此 。由于污染是由于消费引致的,因此家庭如果减少污染,或者是减少消费,或者是对污染进行投入治理。令E为家庭治理环境污染的资源投入量,考虑到污染是消费的副产品,因此可以设定家庭污染函数为:
假设消费越多,污染越严重,因此消费和污染正相关,即 ;同时假定随着污染治理投入的增加,环境污染随之减轻,两者负相关,即 。假定家庭治理污染和消费的资源禀赋总量为Y(收入),则约束条件为C+E=Y。
假定效用函数为线性的,可以表示成如下形式:
表示单位消费产生单位效用,污染带来的边际效用损失为 ,且 。假定单位消费产生单位污染,并且污染治理函数设定为柯布——道格拉斯形式,具体表示为:
该形式表明,当不进行污染治理投入的时候,污染量H等于消费量C,污染量随着消费的增加而增加;随着污染治理投入的提高,当 时,污染量为零,即消除了污染。
2.函数的一般形式。
我们将效用函数扩展到多个个体,假定不存在外部性影响,则效用函数和污染函数可以表示为:
i=1,2,……n
其中, , , 。
求解得到最优消费为:
(二)环境污染模型的建立
从国内外已有文献来看,一般的EKC模型形式为:
y为环境指标,x为人均GDP,u为随机扰动项, 、 、 和 为待估参数。
当 , 时,y和x为线性关系; , , 时,y和x呈现“倒U”型二次曲线关系; , , 时,y和x呈“U”型二次曲线关系; , , 时,y和x为三次曲线关系,图形为“N”型; , , 时,y和x为三次曲线关系,图形为“反N”型;当 , , 时,表示环境污染不受经济水平的影响,两者之间没有关系。
根据Grossman and Krueger(1991;1994)对NAFTA环境效应得出的结论,经济增长对环境的影响表现为三个方面:规模效应(Scale Effects)、结构效应(Structural Effects)、技术效应(Technology Effects)。我们在此基础上对一般的EKC模型进行扩展,由于经济系统中产出的增长必然导致对环境资源需求的增加,同时向环境中排放各种废弃物的存量也在增加,经济发展会导致资源损耗和环境破坏,因此用人均GDP和人口密度来表示规模效应对环境的影响;用产业结构的变化表示结构效应对环境的影响;用单位GDP能耗表示技术效应对环境的影响;同时增加政策效应变量,用污染治理投入代表政策强度和政府政策导向。则本文扩展的EKC模型可以表示为:
其中,ln表示对变量取对数;H为环境污染量;i为个体单位,这里指省市自治区;t为时间序列; 表示截面效应; 是待估参数;y是人均GDP;G表示产业结构变化,这里为第二产业产值占全部产值的比重;M为非农业人口的人口密度;A为单位GDP能耗,表示技术进步;E为污染治理投入,表示政策强度;u为随机扰动项。
三、基于面板单位根和面板协整检验的实证分析
(一)数据的来源和说明
本文所用数据样本区间为1997-2005年,这是由于考虑到重庆从1997年才有数据,同时也是为了考察中国经济增长最为强劲这一时段对于环境的影响问题,从逻辑上来说这段时间变量的关联度应该最强。由于西藏缺少环境指标有关数据,因此我们考察的个体是除了西藏以外的大陆30个省市自治区。我们用工业废水排放量(FS,单位:万吨)、工业废气排放量(FQ,单位:亿标准立方米)和工业固体废弃物排放量(FW,单位:万吨)表示环境污染量,因此原模型变成了三个方程。其他字母所表示的变量如前文扩展的EKC模型所示:y是人均GDP(单位:亿元/万人);A为单位GDP能耗(单位:万吨标准煤/亿元);G表示产业结构变化,这里为第二产业产值占全部产值的比重(%);M为非农业人口的人口密度(单位:万人/公顷);E为污染治理投入(单位:万元),实际应用中对变量取了对数。所有数据均来自于有关年度《中国统计年鉴》、《中国环境统计年鉴》、《中国国土资源年鉴》等权威数据资料库。本文所用软件是Eviews5.1和Stata9.0。
(二)面板模型与估计、检验方法
计量经济理论表明,众多经济变量尤其是面板数据大都是非平稳变量,用非平稳变量进行回归分析结果很大程度上表现为伪回归。为避免伪回归现象,需要对面板数据进行单位根和协整检验。
1.面板单位根检验。
面板模型进行回归分析之前进行单位根检验,这是避免出现伪回归的前提条件。面板单位根检验方法有别于时间序列数据单位根检验,主要为:LLC检验(Levin、Lin and Chu,2002)、Breitung检验(Breitung,2000)、Hadri检验(Hadri,1999)是相同根的检验方法,IPS检验(Im、Pesaran and Shin,2003)、Fisher-ADF(Maddala and Wu,1999;Choi,2001)检验是不同根的检验方法;LLC检验、Breitung检验、IPS检验、Fisher-ADF检验原假设是含有单位根;Hadri检验原假设为不含有单位根。本文所用数据和变量的面板单位根检验结果如表1所示,表中斜体数字表示该检验的结果和其他检验结果相反。
表1 面板数据的单位根检验
检验方法 lnFS lnFQ lnFW lnY


值 LLC检验 0.19(0.57) -1.08(0.14) 2.84(0.99) 6.2(0.99)
Breitung检验 4.19(0.99) -0.02(0.49) 1.04(0.85) 10.7(0.99)
IPS检验 -0.24(0.41) -0.39(0.35) 5.58(0.99) 5.64(0.99)
Fisher-ADF检验 59.1(0.58) 70.14(0.22) 25.3(0.99) 8.36(0.99)
Hadri检验 13.4(0.00)* 46.6(0.00)* 16.8(0.00)* 12.87(0.00)*




值 LLC检验 -23.7(0.00)* -13.1(0.00)* -26.2(0.00)* -8.63(0.00)*
Breitung检验 4.84(0.99) -0.02(0.49) -1.94(0.02)** 1.85(0.97)
IPS检验 -4.09(0.00)* -4.2(0.00)* -3.92(0.00)* -6.53(0.00)*
Fisher-ADF检验 170.9(0.00)* 116.8(0.00)* 144.8(0.00)* 80.8(0.05)**
Hadri检验 0.12(0.45) -1.1(0.86) 0.58(0.28) 0.26(0.34)
检验方法 lnG lnM lnA lnE


值 LLC检验 -0.48(0.31) 8.13(0.99) -6.63(0.00) 11.5(0.99)
Breitung检验 3.77(0.99) 7.02(0.99) 4.2(0.99) -0.52(0.3)
IPS检验 0.69(0.75) 15.2(0.99) -0.27(0.4) -0.48(0.31)
Fisher-ADF检验 62.5(0.46) 46(0.94) 50.7(0.8) 13.1(0.99)
Hadri检验 15.47(0.00)* 17.7(0.00)* 13(0.00)* 22.5(0.00)*




值 LLC检验 -10.55(0.00)* -5.87(0.00)* -22.8(0.00)*
Breitung检验 4.97(0.99) -3.11(0.00)* -5.6(0.00)* -4.5(0.00)*
IPS检验 -4.88(0.00)* -7.24(0.00)* -3.85(0.00)* -6.3(0.00)*
Fisher-ADF检验 109(0.00)* 110.6(0.00)* 95(0.00)* 160.4(0.00)*
Hadri检验 0.03(0.49) -0.18(0.57) 0.53(0.29) -1.05(0.85)
*、**分别表示在1%、5%的显著性水平上拒绝原假设;括号中数据是该统计量的伴随概率。
上述检验结果除了lnFS、lnFQ、lnY、lnG一阶差分值的Breitung检验,lnA水平值的LLC检验显著与众不同外,其他四种或以上检验方法检验结论一致,均表明上述变量是I(1)的,也就是说本文模型所用变量是非平稳变量。
对于面板模型,如果变量是非平稳的,进行回归分析之前需要进行协整检验,以判断是否可能属于伪回归。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

CopyRight(c)2016 www.daanjia.com All Rights Reserved. 本站部份资源由网友发布上传提供,如果侵犯了您的版权,请来信告知,我们将在5个工作日内处理。
快速回复 返回顶部 返回列表