liang183 发表于 2017-1-12 13:27:33

第13章三角形中的边角关系、命题与证明单元测试_参考答案

参考答案与试题解析 一、选择题1.下列命题是真命题的是(  )A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形【考点】命题与定理.【专题】计算题.【分析】根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.【解答】解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 2.下列命题中,真命题的个数有(  )①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个        B.2个        C.1个        D.0个【考点】命题与定理;平行四边形的判定.【分析】分别利用平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形,进而得出即可.【解答】解:①对角线互相平分的四边形是平行四边形,正确,符合题意;②两组对角分别相等的四边形是平行四边形,正确,符合题意;③一组对边平行,另一组对边相等的四边形是平行四边形,说法错误,例如等腰梯形,也符合一组对边平行,另一组对边相等.故选:B.【点评】此题主要考查了命题与定理,正确把握相关定理是解题关键. 3.下列命题正确的是(  )A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形【考点】命题与定理.【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【解答】解:A、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;B、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;C、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;D、对角线相互垂直平分且相等的四边形是正方形,此选项正确;故选D.【点评】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大. 4.下列说法不正确的是(  )A.圆锥的俯视图是圆B.对角线互相垂直平分的四边形是菱形C.任意一个等腰三角形是钝角三角形D.周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大【考点】命题与定理.【分析】根据三视图、菱形的判定定理、等腰三角形的性质、正方形的性质、即可解答.【解答】解:A、圆锥的俯视图是圆,正确;B、对角线互相垂直平分的四边形是菱形,正确; C、任意一个等腰三角形是钝角三角形,错误;例如,顶角为80°的等腰三角形,它的两个底角分别为50°,50°,为锐角三角形; D、周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大,正确;故选:C.【点评】本题考查了命题与定理,解决本题的关键是熟记三视图、菱形的判定定理、等腰三角形的性质、正方形的性质. 5.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是(  )A.1        B.2        C.3        D.4【考点】命题与定理.【分析】根据平行四边形的性质对①进行判断;根据矩形的判定方法对②进行判断;根据正方形的性质对③进行判断;根据菱形的判定方法对④进行判断.【解答】解:平行四边形的对边相等,所以①正确;对角线相等的平行四边形是矩形,所以②错误;正方形既是轴对称图形,又是中心对称图形,所以③正确;一条对角线平分一组对角的平行四边形是菱形,所以④正确.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 6.下列命题中错误的是(  )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据平行线的性质对C进行判断;根据矩形的性质对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项为真命题;B、菱形的对角线互相垂直,所以B选项为真命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、矩形的对角线相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
完整试题以及参考答案,请下载附件 
**** Hidden Message *****
页: [1]
查看完整版本: 第13章三角形中的边角关系、命题与证明单元测试_参考答案