liang183 发表于 2016-12-12 13:34:22

指数函数、幂函数、对数函数增长的比较_高三总复习

从图中可以观察出,y=2x与y=x2有两个交点:(2,4)和(4,16),当0<x<2时,2x>x2;当2<x<4时,2x<x2;当x>4时,2x>x2恒成立,即y=2x比y=x2增长得快;而在(0,+∞)上,总有x2>log2x,即y=x2比y=log2x增长得快.由此可见,在(0,2)和(4,+∞)上,总有2x>x2>log2x,即y=2x增长得最快;在(2,4)上,总有x2>2x>log2x,即y=x2增长得最快.(3)一般的指数函数、幂函数、对数函数增长的比较改变指数函数、对数函数的底数和幂函数的指数,重新作图,观察图像会发现这三种函数的增长情况具有一定的规律性.一般地,对于指数函数y=ax(a>1)和幂函数y=xn(n>0),通过探索可以发现,在区间(0,+∞)上,无论a比n小多少,尽管在x的一定范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn;同样的,对于对数函数y=logax(a>1)和幂函数y=xn(n>0),随着x的增大,logax增长得越来越慢,图像就像是渐渐地与x轴平行一样,尽管在x的一定区间内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax<xn.综上所述,尽管函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(x>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢,因此,总会存在一个x0,当x>x0时,就会有logax<xn<ax.由于指数函数值增长非常快,人们常称这种现象为“指数爆炸”.
完整答案请下载附件
**** Hidden Message *****
页: [1]
查看完整版本: 指数函数、幂函数、对数函数增长的比较_高三总复习