8215875 发表于 2018-8-23 11:11:10

2018理科专业《矩阵论》教学改革与实践

  理科专业《矩阵论》教学改革与实践
摘 要: 矩阵论作为一种重要的数学工具在数学学科与其他科学技术领域有着重要的应用。工科院校理科专业在《矩阵论》教学中注重计算能力的培养,对于应用能力的培养有所欠缺,学生在学习中主动性不足,学习兴趣不浓厚。针对理科专业矩阵论教学过程中出现的问题,本文主要从教学内容、教学方法和考核方式三论文联盟个方面探讨教学改革的方法。
  关键词: 《矩阵论》教学 教学改革 教学内容 教学方法 考核方式
  
  矩阵论作为数学的一个重要分支,其矩阵理论和方法表达简洁、刻画深刻,是一种重要的数学工具。矩阵理论在数学学科和其他科学技术领域都有非常广泛的应用。随着电子计算机及计算技术的发展,矩阵理论的应用前景更为广阔。
  本课程主要讲授线性空间与线性变换、范数理论、矩阵分析、矩阵分解、特征值估计、广义逆等内容。
  一、教学改革的背景
  虽然矩阵理论有着广阔的应用背景及前景,但是,在工科院校理科专业《矩阵论》教学过程中出现的问题恰恰因为课程理论内容与实际应用联系不密切。 思想汇报 http:///sixianghuibao/
  理科专业课程设置中的《数学分析》、《高等代数》等也都注重培养学生逻辑思维能力,对于应用能力的培养比较欠缺。理科学生对于理论知识的实际的应用,单从教材中,接触到的非常少。在理科专业课程教学中出现了一个很突出的问题:学生学习了大量的理论知识,计算能力得到大量的训练,但是这些理论知识有什么背景?具体有什么用呢?这个问题困扰着大部分的理科生,他们看不到理论知识的来源和具体应用,只是在机械地进行着推理和计算。教材或者教师的讲解中很少有涉及所学的理论知识在物理或者经济或者工程等方面的背景,理论知识可以解决哪些实际问题。单一的逻辑思维能力和计算能力的培养大大降低了他们的学习主动性和学习兴趣。
  《矩阵论》课程中的矩阵理论与方法与实际应用有着密切的联系,但是教材中应用的分析很少,即使有也是脱离实际的问题。如何针对该课程的特点和授课学生的特点,调动学生学习积极性,培养学生浓厚的学习兴趣成为教师思考的主要问题。
  课程以期末笔试为单一的考核方式,注重考查学生对基本运算的掌握,没有考查相关解决实际问题的能力,这也是造成学生学习兴趣不浓厚的原因。
  二、教学内容改革及其实践探讨
  1.教学内容上补充理论知识在其他学科中的应用。
  矩阵理论在数学学科与其他科学技术领域,诸如高等数学、数值分析、优化理论、微分方程、概率统计、运筹学、控制论、系统工程等学科都有广泛的应用。但是教材中具体应用的例子较少。针对这一情况进行教学内容上的改革,具体实践如下。
  (1)行列式应用:求过定点的曲面曲线方程,微积分中的证明。高等数学中的内容可以用行列式的理论进行求解和证明。
  (2)矩阵的秩:判别曲面的位置关系。矩阵作为数学学科的一个重要工具,可以解决很多问题,高等数学中曲面的位置关系及判别直线是否共面等,都是利用了行列式的几何意义。
  (3)矩阵对角化:求解微分方程组。可对角化的矩阵在矩阵中是非常特殊的一类,对这类矩阵的研究理论的应用简化了问题的解决过程,在微分方程中可以化某些一阶常微分方程为可分离变量的方程来求解。
  (4)正交变换:判断二次曲面类型,最优化问题。正交变换因为其保持了内积、夹角、长度等性质,在计算时对于误差不会变化,从而利于优化问题的计算机计算。
  (5)矩阵的正定性:求解函数极值。正定矩阵对应的标准形中的平方项系数都大于零,利用标准形解决高等数学中函数极值问题。
  (6)二次型:多元函数极值。二次型的标准形中只含有平方项,从而在求解最值或极值问题时易于 作文 http:///zuowen/
页: [1]
查看完整版本: 2018理科专业《矩阵论》教学改革与实践