9466083 发表于 2018-8-22 20:59:25

2018在解决力学问题时采用动能定理与机械能守恒定律的策略的初步拟定

在解决力学问题时采用动能定理与机械能守恒定律的策略的初步拟定
在解答包含做功与能量变化的力学问题中,动能定理和机械能守恒定律都是用于解题的核心公式。在历年的高考中,两者都是出题热点。若能灵活掌握两者,就可以说是掌握了两枚解题的金钥匙。但对于学生而言,面对一道新的习题时,他总是更习惯于采用其中一种固定的思路来尝试解题。而动能定理和机械能守恒定律在解题过程中的地位类似,这种情况下,两者只会有一者被采用。其实,具体采用哪一条公式,这完全是取决于题目的类型与条件的。倘若学生优先采用了相对更有利于解题的一条公式,那么他的解题过程将会非常流畅,并且从中获得极大的自信与满足感,有利于其进一步的学习。因此,分析出并比较动能定理和机械能守恒定律两者的适用优势,归纳出一个初步的采用策略,并以此来分配平时教学的侧重,这将会显著地提高教学效能。
  现将通过对一些例题的分析,对比在采用动能定理和机械能守恒定律两种不同的解题公式时的优势与劣势,从而得到一个初步的结论。
  例题1:平台型斜抛问题
  如图,在一个高为H的平台上,将一个物体以速度v0斜向上抛出,物体最终落在另一个高为h的平台上,求:当物体刚好落在另一个平台上时的速度v。
  1.使用动能定理:
  解:W=Ek2-Ek1
  W=WG=mg(H-h)
  Ek2=12mv2
  Ek1=12mv02
  所以有mg(H-h)=12mv2-12mv02
  解得v=gH-h+v02
  2.使用机械能守恒定律:
  解:将地面定义为零势面
  E=Ek1+Ep1
  Ek1=12mv02;Ep1=mgH
  E`=Ek2+Ep2
  Ek2=12mv2;Ep2=mgh
  由于只有重力作用,所以E=E`
  故有12mv02+mgH=12mv2+mgh
  解得v=gH-h+v02
  评价:在这一题中,使用动能定理的话步骤更少,但使用机械能守恒定律条理清晰,步骤也不是很多,这一场不分高下。
  例题2:公路交通工具行驶问题
  一辆在公路上行驶的汽车,质量m=5103kg,行驶过程可以看为匀变速运动,从静止开始加速的路程为5.0102m时,开始匀速行驶,行驶速度v=72km/h,在此过程中汽车受到的阻力是其重量的0.02倍,求引擎提供的牵引力。
  1.使用动能定理:
  分析:和上一题不同的是,这一题中研究对象一共受到四个力重力,支持力,阻力,牵引力的作用,而其中重力是不做功的!做功的是阻力和牵引力。为此,W的表述就要适当斟酌一下了。
  解:W=Ek2-Ek1
  W=Wf+WF=f(-lf)+FlF=-flf+FlF
  Ek2=12mv2
  Ek1=12mv02=0
  所以有-flf+FlF=12mv2-12mv02
  解得F=12mv2+flflF
  代入数据:F=3000N
  2.使用机械能守恒定律:
  由于涉及到了非保守力也就是阻力和牵引力做功,机械能守恒定律无法使用。
  评价:至此,机械能守恒定律的最大缺陷暴露无遗:由于其拥有只有保守力做功这一限制度超高的使用条件,导致了面对相当数量的问题时,机械能守恒定律根本无法使用。而这时,动能定理则因为其毫无限制而大展神威。
  例题3:竖抛问题
  以10m/s的速度将质量为m的物体从地面竖直向上抛出,若忽略空气阻力,求于上升过程中何处重力势能与动能相等?(默认地面为参考面)
  1.使用动能定理:
  解析:这一题对动能定理相当不友好,原因在于终点的位置高度涉及过程中外力做功和终点时的速度涉及到末动能全部没有给出,那是不是说就不能使用动能定理了呢?也不尽然,尽管终点位置高度与终点速度均未给出,我们依然可以先将其待定,再想办法消去即可。
  解:设起点为A,则衍生出初始高度为hA,初始速度为vA;
  设在上升过程中,当球到达B点时,其重力势能与动能相等,则衍生出当时高度为hB,速度为vB.
  则有W=Ek2-Ek1
  W=WG=mg(hA-hB)=-mghB
  Ek2=12mvB2
  Ek1=12mvA2
  所以有-mghB=12mvB2-12mvA2
  根据题意:可得mghB=12mvB2
  所以可得12mvA2=2mghB
  解得hB=vA24g
  代入数据得hB=2.5m
  2.使用机械能守恒定律:
  解析:这一题只有重力做功,机械能守恒定律可以使用。
  解:地面为零势面
  EA=EKA+EPA
  EkA=12mvA2;EpA=mgH=0
  EB=EKB+EPB
页: [1]
查看完整版本: 2018在解决力学问题时采用动能定理与机械能守恒定律的策略的初步拟定