2018电子商务推荐系统中推荐技术研究
[摘 要] 随着电子商务的不断深入发展,电子商务推荐系统的应用更加广泛。文章主要介绍了目前应用较广的几种电子商务推荐系统中的推荐技术,并对这几种推荐技术存在的问题进行了分析。[关键词] 电子商务 推荐系统 推荐技术
一、引言
随着网络的广泛普及,电子商务对传统的商贸活动产生了革命性的变化,产生从以商品为中心到以客户为中心的商业模式的转变。新的商业环境在为企业提供新的商机的同时,也对企业提出了新的挑战。围绕客户进行服务,为客户提供所需要的商品,所以对每个客户提供个性化的服务已经成为必要。而电子商务推荐系统成为解决问题的重要途径。本文研究了电子商务推荐系统中的各类推荐技术。
二、电子商务推荐系统
电子商务推荐系统定义为:利用电子商务网站向用户提供商品信息和建议,帮助客户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。它是一个基于客户网上购物的以商品为推荐对象的个性化推荐系统,为客户推荐符合其兴趣爱好的商品。分析客户的消费偏向,向每个客户具有针对性地推荐的产品,帮助客户从庞大的商品目录中挑选真正适合自己需要的商品。电子商务推荐系统在帮助了客户的同时也提高了客户对商务活动的满意度,从而换来对电子商务站点的进一步支持。
电子商务推荐系统主要起到了三个方面的作用:首先,极大地增加了客户,可以把网站的浏览者转变为购买者,提高主动性;其次,可以提高网站相关系列产品的连带销售能力;最后,可以提高、维持客户对网站的满意度和信任度。
电子商务推荐系统具有良好的发展和应用前景。在日趋激烈的竞争环境下,电子商务推荐系统能有效保留客户,提高电子商务网站系统能大大提高企业的销售额。成功的电子商务推荐系统将会产生巨大的经济效益和社会效应。
三、电子商务推荐技术
目前,电子商务推荐系统中使用的主要推荐技术有基于内容推荐,协同过滤推荐,基于知识推荐,基于效用推荐,基于关联规则推荐,混合推荐等等。
1.基于内容的推荐。它是信息过滤技术的延续与发展,项目或对象通过相关特征的属性来定义,系统基于商品信息, 包括商品的属性及商品之间的相关性和客户的喜好来向其推荐。基于商品属性主要是基于产品的属性特征模型推荐。
内容推荐技术分析商品的属性及其相关性可以脱机进行,因而推荐响应时间快。缺点是难以区分商品信息的品质和风格,而且不能为用户发现新的感兴趣的商品,只能发现和用户已有兴趣相似的商品。
2.协同过滤推荐。协同过滤推荐是目前研究最多、应用最广的电子商务推荐技术。它基于邻居客户的资料得到目标客户的推荐,推荐的个性化程度高。利用客户的访问信息,通过客户群的相似性进行内容推荐,不依赖于内容仅依赖于用户之间的相互推荐,避免了内容过滤的不足,保证信息推荐的质量。
页:
[1]