2018基于椭圆曲线的数字签名加解密技术的研究
作者:王智文 李道丰 谢国庆[摘要] 本文在分析了现行数字签名(PKI)的缺陷的基础上,提出基于椭圆曲线的数字签名加解密技术的数字签名体制。该方案是基于椭圆曲线离散对数问题的难解性,大大增强了攻击难度和提高了签名的效率,极大地提高了数字签名体制的安全性。
[关键词] 数字签名用户密钥椭圆曲线公钥密码离散对数
一、引言
数字签名用于鉴定签名人的身份以及对一项电子数据内容的认可。它还能验证出文件的原文在传输过程中有无变动,确保传输电子文件的完整性、真实性和不可抵赖性。随着计算机网络的飞速发展和迅速普及,数字签名系统密钥的安全性和数字签名的有效性,一直是国内外研究人员的研究热点。现行数字签名的加解密技术绝大多数采用的是20世纪80年代由美国学者提出的公钥基础设施(PKI)。PKI是一种利用非对称密码算法(RSA算法,即公开密钥算法)原理和技术来实现的。然而近年来的研究表明,512位模长的RSA已经被攻破,为了保证安全性。RSA不得不采用更长的密钥,这将降低RSA系统的运行速度。椭圆曲线密码系统(ECC)比RSA等其他公钥加密系统能提供更好的加密强度、更快的执行速度和更小的密钥长度。这些性能使得椭圆曲线密码系统能用较小的开销和时延实现较高的安全性,特别能满足在带宽、计算能力或存储能力等受限的各种特殊应用场合。基于椭圆曲线的数字签名已成为目前数字签名技术的研究热点。本文对基于椭圆曲线的数字签名加解密实现技术进行研究。
二、基于椭圆曲线的数字签名加解密技术简介
基于椭圆曲线的数字签名加解密技术是建立在有限域上的椭圆曲线基础上。所谓有限域Fq上的椭圆曲线是在仿射平面A2k上满足Weierastrass方程的平滑曲线:y2+a1xy+a3y=x3+a2x2+a4x+a6
也就是该方程的解及无穷远点O的集合,其中ai∈Fq(i=1,2,3,…,6)。把该椭圆曲线表示为E,椭圆曲线上的所有点组成一个 Abel群,用#E(Fq)来表示。椭圆曲线密码系统就建立在这个有限群上。有限域Fq上的椭圆曲线的点的加法法则是:
已知椭圆曲线E上的两点P、Q,其中P=(xP,yP),Q=(xQ,yQ),且P≠-Q,设λ是P、Q所确定的直线的斜率,当P≠Q时,有;当 P=Q时,有,令R=P+Q=(xP+Q,yP+Q),可知R也是椭圆曲线E上的点,其中有
这时点P的逆-P=(xP,-yP)。
三、椭圆曲线的数字签名加解密算法实现
1.系统的建立和密钥生成
(1)系统的建立
选取一个基域Fq,在Fq上随机寻找一条阶含有大素数因子的随机椭圆曲线E及E上阶为素数n的基点G=(xG,yG),a,b是椭圆曲线E的参数。则我们已经建立了椭圆曲线公钥密码系统,系统参数为(Fq,G,n,a,b)。 ;
页:
[1]