2018基于Web的数据挖掘在电子商务中的应用
作者:申艳光 邢丽莉 靳书和[摘要] 本文探讨了Web数据挖掘在电子商务智能搜索引擎和客户关系管理等方面的应用,利用Web挖掘技术对电子商务中的大量信息进行分析和推理,从中挖掘出潜在的模式,预测客户行为,为企业的决策者调整市场策略、做出正确的决策、减少风险、获得竞争优势提供帮助。
[关键词] Web数据挖掘电子商务搜索引擎客户关系
一、引言
目前,如何对网络上大量的信息进行有效组织利用,帮助海量数据的拥有者们找出真正有价值的信息和知识,以指导商业决策行为,成为电子商务经营者关注的问题。迅速发展的基于Web的数据挖掘技术,为解决电子商务所面临的问题提供了有效途径。
二、Web数据挖掘能够获取的知识模式
运用Web数据挖掘技术能够对电子商务站点上的各种数据源进行挖掘,找到相关的一些知识模式,以指导站点人员更好地运作站点和向客户提供更好的服务。一般运用Web数据挖掘可以挖掘出来的知识模式有以下几个。
1.路径分析
它可以被用于判定在一个Web站点中最频繁访问的路径。通过路径分析,可以得到重要的页面,可以改进页面及网站结构的设计。
2.关联规则的发现
在电子商务中关联规则的发现可以找到客户对网站上各种文件之间访问的相互关系,可以找到用户访问的页面与页面之间的相关性和购买商品间的相关性。利用这些相关性,可以更好的组织站点的内容,实施有效的市场策略,增加交叉销售量,同时还可以减少用户过滤信息的负担。
3.序列模式的发现
序列模式的发现就是在时间戳有序的事务集中,找到那些“一些项跟随另一项”的内部事务模式。它能够便于进行电子商务的组织预测客户的访问模式,对客户开展有针对性的广告服务。通过系列模式的发现,能够在服务器方选择有针对性地页面,以满足访问者的特定要求。
4.分类和预测
分类发现就是给出识别一个特殊群体的公共属性的描述,这个描述可以用来分类新的项。分类的目的是通过构造分类模型或分类器,把数据库中的数据项映射到给定类别中的某一个,以便用于预测;也就是利用历史数据记录自动推导出对给定数据的推广描述,从而能对未来数据进行预测,进行适合某一类客户的商务活动。
5.聚类分析
聚类分析可以从Web访问信息数据中聚集出具有相似特性的那些客户。在Web事务日志中,聚类顾客信息或数据项能够便于开发和执行未来的市场策略。这种市场策略包括自动给一个特定的顾客聚类发送销售邮件、为属于某一个顾客聚类中的顾客推荐特定的商品等。对电子商务来说,客户聚类可以对市场细分理论提供有力的支持。通过对聚类客户特征的提取,电子商务网站可以为客户提供个性化的服务。
6.异常检测
异常检测是对分析对象的少数的、极端的特例的描述,以揭示内在的原因,从而减小经营的风险。异常检测在电子商务中的应用可以体现在信用卡欺诈甄别、发现异常客户和网络入侵检测等方面。
三、Web数据挖掘在电子商务中的应用
1.数据抽取方法在电子商务中的应用
Web数据挖掘基本方法之一就是进行数据抽取,以期对数据进行浓缩,给出它的紧凑描述,如方差值等统计值或用直方图等图形方式表示,从数据泛化的角度讨论数据总结,把最原始、基本的企业信息数据从低层次抽象到高层次,以便于决策。
页:
[1]