7908571 发表于 2018-8-17 22:44:09

2018生物信息学分析患有乳腺癌的乳腺球样本中与自我更新相关的关键基

  摘 要 目的: 通过生物信息学分析乳腺癌中具有自更新能力的乳腺球样本,挖掘与自更新能力有关的关键基因,为乳腺癌治疗提供基础和理论依据。方法:首先通过比较原位乳腺癌样本(breast cancer, BC)与乳腺癌的乳腺球样本(mammosphere samples, MS)的mRNA芯片表达数据,获得差异表达基因(differentially expressed genes,DEGs)。随后构建DEGs的蛋白与蛋白相互作用 (protein-protein interaction, PPI)网络,并从中筛选出一个高度关联的子网络,最后对子网络进行功能富集分析。结果:MS和BC两组样本间共有1 083个DEGs。从这些DEGs构建得到的PPI网络中,获得了一个包含49个DEGs的高度关联的子网络,其中tspo、igf1、fn1 和cdk1为子网络的核心基因。结论:这些核心基因可能是乳腺癌细胞中与自更新相关的基因。
http://
  关键词 乳腺癌 乳腺球 自我更新 差异表达基因 蛋白与蛋白相互作用网络
  中?D分类号:R737.9 文献标识码:A 文章编号:1006-1533(2018)01-0076-05
  Analysis of critical genes related to self-renewal in the mammosphere model of breast cancer by bioinformatics
  ZANG Weidong*
  (Shanghai Fengheng Biotechnology Co., Ltd., Shanghai 200240, China)
  ABSTRACT Objective: To explore the key genes related to self-renewal in breast cancer by bioinformatics, which may provide a basic theoretical basis for the treatment of breast cancer. Methods: The mRNA microarray data from breast cancer(BC) and mammosphere samples (MS) were compared. The protein-protein interaction (PPI) network of differentially expressed genes (DEGs) was constructed and a highly correlated subnetwork was screened out, and then the functional enrichment analysis was performed on the subnetwork. Results: There were 1 083 DEGs between MS and BC samples. Then the PPI network was constructed based on these DEGs. Subsequently, a highly correlated subnetwork containing 49 DEGs was obtained from the PPI network. Notably, tspo, igf1, fn1 and cdk1 were considered as the core genes of the subnetwork. Conclusion: These core genes may be associated with self-renewal in breast cancer cells.
  KEY WORDS breast cancer; mammosphere; self-renewal; differentially expressed genes; protein-protein interaction
  network
  乳腺癌(breast cancer,BC)是发生在乳腺腺上皮组织的恶性肿瘤,多发生于女性,男性仅占1%,全世界每年约有100万例新发病例和40万死亡病例。乳腺并不是维持人体生命活动的重要器官,所以原位乳腺癌并不致命;但癌细胞转移后,会危及生命。乳腺癌细胞的一些子细胞系(如CD44+/CD24-/low细胞)能抵抗治疗并导致癌症复发。CD44+/CD24-/low可以从乳腺癌组织中分离出来并通过体外移植到具备自更新(self-renewal)能力的乳腺球样本(mammosphere samples,MS)中培养。此外,MS培养可以为BC细胞的肿瘤诱导亚群的进一步表征提供高度适宜的模型。Creighton等对原位乳腺癌样本和乳腺癌的乳腺球样本的生物芯片表达谱数据进行分析,发现经过传统治疗后残留的CD44+/CD24-/low在MS样本中具有高表达特征。Creighton等认为与上皮间充质转化(EMT)相关的靶蛋白或许能够治疗癌细胞并抑制BC复发,但能抑制BC复发的目标基因或蛋白质在他们的研究中很少提及。本文利用生物信息学分析Creighton的基因芯片数据,尝试挖掘出与抗癌细胞治疗和复发相关的关键基因,为乳腺癌的相关研究提供基础和理论依据。
  1 材料与方法
  1.1 表达谱数据获取
  从Gene Expression Omnibus(GEO,http://www. ncbi.nlm.nih.gov/geo/)中选取下载实验组GSE7515芯片表达数据。此套表达谱数据集共有26个样本,其中包括11个原位乳腺癌的样本和15个乳腺癌的乳腺球样本。该芯片采用Affymetrix Human Genome U133Plus 2.0 Array平台进行检测。利用Affy软件包中的GCRMA方法对所有样本mRNA表达数据进行预处理,并从Probe ID转换Gene Symbol并处理后,得到Gene Symbol对应的表达矩阵,总共获得19 851个Gene Symbols。     1.2 差异表达基因(differentially expressed genes, DEGs)筛选
  原始数据分为原位乳腺癌样本(BC,对照组)和乳腺癌的乳腺球样本(MS,实验组)。经过t检验后的Gene Symbols相应的P值,使用Benjamini & Hochberg方法对P值进行多重检验校正,得到校正后的P值即adj. P. Value,我们将adj. P. Value1.5的数据视为DEGs,即为乳腺癌在不同组织间相关的显著差异基因。
  1.3 DEGs的功能富集分析
  使用DAVID在线工具(https://david.ncifcrf.gov/),运用默认参数对DEGs进行基因本体论(Gene Ontology, GO)和KEGG 通路显著性富集分析。
  1.4 蛋白质与蛋白质相互作用关系(protein-protein interaction,PPI)网络
  本实验根据上一步得到的上调和下调两组DEGs,利用STRING在线工具(https://string-db.org/)进行PPI分析。本次分析的参数设置为Required Confidence(combined score)> 0.4。使用Cytoscape软件进行网络图构建,利用PPI网络的无尺度性质,找到网络中的中心蛋白质,即hub蛋白。
  1.5 高度关联子网络分析
  将得到乳腺癌的不同组织间的DEGs的PPI关系,通过R包BioNet进行进一步地筛选分析,构建出一个高度关联的子网络。使用Cytoscape对子网络进行网络图构建,并对网络进行KEGG 通路分析。
  2 结果
  2.1 DEGs的筛选
  GSE7515数据集经过差异分析以及显著性阈值处理后,共得到1 083个DEGs(|log2FC|>1.5,adj. P. Value
  下?{DEGs类胰岛素生长因子(igf1)和cdk1在子网络中也具有较高的连接度。功能富集分析结果显示,igf1参与了多条显著代谢通路,如黏合斑,癌症通路,p53信号通路,神经胶质瘤和黑素瘤的代谢通路。igf1是一种生长调节素,能够刺激有丝分裂并抑制细胞凋亡。因为癌症与细胞分化和凋亡有关,尤其是异常凋亡,在肿瘤发生中和抗肿瘤治疗的过程中发挥着关键作用,所以研究细胞凋亡对癌症诊断、预后和治疗具有重大意义。有研究表明igf1会和雌二醇协同促进乳腺癌的增长,从而增加患癌的风险。且igf1和它的连接蛋白IGFBP3在癌症风险评估和预防上具有重要作用。而CDKs可以通过促进磷酸从ATP转移到特定的蛋白质基质来调节细胞周期。其中cdk1是细胞周期中最关键的CDK,在有丝分裂的细胞周期时间中起着关键作用。本研究结果显示,cdk1参与的细胞周期代谢通路、p53信号通路和孕酮介导的卵母细胞成熟通路,这三条代谢通路为显著富集代谢通路。综上所述,igf1和cdk1可能通过参与在乳腺细胞如有丝分裂和凋亡的一系列细胞周期相关活动,从而影响乳腺细胞的肿瘤发生。
  我们应用生物信息学方法分析了BC样本和MS样本的表达谱芯片。其中一些关键的DEGs,如tspo、fn1、igf1和cdk1,可能在自我更新和维持癌细胞的生存中发挥关键作用,这些基因也可以作为乳腺癌治疗或复发的重要指标。我们的研究结果能为乳腺癌的治疗提供一些新的参考,但还需要进一步的实验来验证这些结果。
  参考文献
   Ghoussaini M, Fletcher O, Michailidou K, et al. Genomewide association analysis identifies three new breast cancer susceptibility loci. Nat Gent, 2012, 44(3): 312-318.
   Dick JE. Stem cell concepts renew cancer research. Blood, 2008, 112(13): 4793-4807.
   Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst, 2008, 100(9): 672-679.
   Grimshaw MJ, Cooper L, Papazisis K, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res, 2008, 10(3): R52. doi: 10.1186/bcr2106.
   Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci, 2009, 106(33): 13820-13825.
   Wu Z, Irizarry RA, Gentleman R, et al. A model-based background adjustment for oligonucleotide expression arrays. Johns Hopkins University Dept. of Biostatistics Working Paper, 2004, 99(468): 909-917.
   Beisser D, Klau GW, Dandekar T, et al. BioNet: an R-package for the functional analysis of biological networks. Bioinformatics, 2010, 26(8): 1129-1130.
   Rone M, Liu J, Blonder J, et al. Targeting and insertion of the cholesterol-binding translocator protein into the outer mitochondrial membrane. Biochemistry, 2009, 48(29): 6909-6920.
   Samuelson L, Dukes M, Hunt C, et al. TSPO targeted dendrimer imaging agent: synthesis, characterization, and cellular internalization. Bioconjug Chem, 2009, 20(11): 2082-2089.
   Veenman L, Shandalov Y, Gavish M. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J Bioenerg Biomembr, 2008, 40(3): 199-205.      Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov, 2010, 9(6): 447-464.
   Galluzzi L, Morselli E, Kepp O, et al. Mitochondrial gateways to cancer. Mol Aspects Med, 2010, 31(1): 1-20.
   Soikkeli J, Podlasz P, Yin M, et al. Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. Am J Pathol, 2010, 177(1): 387-403.
   Ioachim E, Charchanti A, Briasoulis E, et al. Immunohistochemical expression of extracellular matrix components tenascin, fibronectin, collagen type IV and laminin in breast cancer: their prognostic value and role in tumour invasion and progression. Eur J Cancer, 2002, 38(18): 2362-2370.
   Xing H, Weng D, Chen G, et al. Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Letters 2008, 261(1):108-119.
   Key TJ, Appleby PN, Reeves GK, et al. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol, 2010, 11(6): 530-542.
   Mita A, Mita M, Nawrocki S, et al. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res, 2008, 14(16): 5000-5005.
   Stoll B. Breast cancer: further metabolic-endocrine risk markers?. Br J Cancer, 1997, 76(12): 1652-1654.
   Renehan A, Zwahlen M, Minder C, et al. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet, 2004, 363(9418): 1346-1353.
   Ubersax JA, Woodbury EL, Quang PN, et al. Targets of the cyclin-dependent kinase Cdk1. Nature, 2003, 425(6960): 859-864.
   Castedo M, Perfettini JL, Roumier T, et al. Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ, 2002, 9(12): 1287-93.
   Santamaría D, Barrière C, Cerqueira A, et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007, 448(7155): 811-815.
页: [1]
查看完整版本: 2018生物信息学分析患有乳腺癌的乳腺球样本中与自我更新相关的关键基