429437 发表于 2018-8-17 09:09:16

2018外泌体内microRNA―135a跨血脑屏障转运的初步研究

  [摘要] 目的 初步研究外泌体内microRNA-135a(miR-135a)跨血?X屏障和细胞转运的现象。 方法 提取APP/PS1双转基因小鼠脑脊液(CSF)的高miR-135a外泌体,将其注射入野生型小鼠脑室并干预SH-SY5Y细胞,检测小鼠外周血和培养基外泌体内miR-135a水平及SH-SY5Y细胞β分泌酶-1(BACE-1)的表达和活性。 结果 高miR-135a外泌体脑室注射能使野生型小鼠CSF和血浆外泌体miR-135a显著升高(Phttp://
  [关键词] 阿尔茨海默病;MicroRNA;外泌体
  [中图分类号] R749 [文献标识码] A [文章编号] 1673-7210(2017)11(c)-0022-05
  A preliminary study on the cross blood-brain-barrier transport of exosomal microRNA-135a
  LIU Chengeng1 HAO Ting2 YANG Tingting1 MENG Shuang3 WANG Peichang1
  1.Department of Clinical Laboratory, Xuanwu Hospital, Capital Medcial University, Beijing 100053, China; 2.Department of Pathology, Heze Municipal Hospital, Shandong Province, Heze 274000, China; 3.State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
   Objective To study the effect of microRNA-135a (miR-135a) on blood-brain barrier and cell transport in exocrine. Methods The high miR-135a exosomes were extracted from the cerebrospinal fluid (CSF) of the transgenic mice and injected into the ventricles of the wild type mice and intervened with SH-SY5Y cells. The levels of miR-135a in the peripheral blood of mice and the exosomes of the culture, and the expression and activity of β-secretase-1 (BACE-1) in SH-SY5Y cells were determined. Results Intraventricular injection of miR-135a exosomes resulted in a significant increase in CSF and plasma exosomal miR-135a in wild-type mice (P 理学和行为学改变,是应用较多的AD模型。本课题组研究表明,APP/PS1双转基因小鼠和AD患者的脑脊液(cerebro spinal fluid,CSF)中总体miR-135a水平显著升高,且小鼠和AD患者CSF和血清中泌体(exosome)内miR-135a亦升高,提示其可作为AD的潜在生物标志物。但外周血中的核酸来源复杂,主要包括组织细胞的病理/生理释放以及细胞死亡/凋亡释放等来源,在前期研究中被检测到升高的外泌体内miR-135a是否主要来自脑脊液,抑或脑脊液中的高miR-135a状态是否能直接导致外周血中相应指标的改变并未明确。本研究主要就脑脊液外泌体内miR-135a跨血脑屏障向外周血转运的现象进行初步研究。     1 材料与方法
  1.1 ?剂与仪器
  外泌体提取试剂盒、Trizol、Lipofectamine 2000(Invitrogen,美国加利福尼亚);DMEM培养基(Gibco,美国加利福尼亚);PBS、小牛血清、蛋白浓度测定试剂盒、引物合成(生物工程公司,中国上海);miR-135a拟似物、Ce_miR-39(Tiangen,中国北京);QuantiTect SYBR Green PCR Master Mix、RNA逆转录试剂盒(Qiagen,德国威斯特法伦);BACE-1活性测定试剂盒(Sigma,美国威斯康星);立体定位仪(Stoelting,美国伊利诺斯);罗氏480 PCR仪(Roche,瑞士巴塞尔);D-8紫外可见分光光度计(菲勒公司,中国江苏)。
  1.2 外泌体提取
  9月龄APP/PS1双转基因小鼠和9月龄野生型小鼠购自中国医学科学院实验动物研究所,使用立体定位仪抽取CSF;使用眼球摘除法留取肝素抗凝血,于4℃下3000 r/min离心7 min,留取血浆。在无菌环境下,使用外泌体提取试剂盒分别提取CSF,提取出的外泌体经PBS重悬混匀后,再次提取,以去除其他影响因素,再次提取出的外泌体混合物经miR-135a浓度测定后使用PBS重悬成105 copy/mL备用。使用立体定位仪将提取自转基因小鼠CSF的外泌体(105 copy/mL miR-135a)注射入野生型小鼠的第三脑室(定位为前囟前2.0 mm,中缝旁2.0 mm,硬膜下4 mm)作为实验组(5只),使用等体积的PBS注射作为对照组(5只)。6 h和12 h后抽取CSF和血浆标本,提取外泌体。本实验方案已经首都医科大学宣武医院伦理委员会批准。
  1.3 细胞培养
  SH-SY5Y细胞培养于含10%小牛血清的DMEM培养基中,分别使用来自转基因小鼠和野生型小鼠CSF和血浆的外泌体干预(miR-135a终浓度为105 copy/L),同时使用miR-135a拟似物及Lipofectamine 2000包裹的miR-135a拟似物作用上述细胞作为对照组,干预6 h和12 h后提取细胞总RNA,同时提取培养基的外泌体。根据干预物的名称进行分组,实验组和对照组实验均重复5次。
  1.4 BACE-1活性测定
  使用试剂盒检测BACE-1的活性,严格按照试剂盒说明书操作:使用PBS将提取并经离心的细胞总蛋白调整至5~7 g/L,加入检测液,使用标准曲线法检测BACE-1的相对活性(相对荧光值)。
  1.5 BACE-1 mRNA定量测定
  使用Trizol试剂提取SH-SY5Y细胞总RNA。使用QuantiTect SYBR Green PCR Master Mix,以GAPDH为内参,分别使用qPCR检测外泌体干预组和各个对照组BACE-1的mRNA。BACE-1上游引物:3′-AGGCAGTCTCTGGTATACACCCATC-5′,下游引物:3′-T?鄄GCCACTGTCCACAATGCTC-5′,产物长度137 bp;GAP?鄄DH上游引物:3′- GCACCGTCAAGGCTGAGAAC-5′,下游引物:3′-TGGTGAAGACGCCAGTGGA-5′,产物长度138 bp;反应条件:95℃ 30 s;95℃ 5 s、60℃ 30 s,35个循环。使用2-ΔΔCt法进行相对定量。
  1.6 小RNA提取及miR-135a定量测定
  20 μL逆转录体系中含RNA模板0.4 ng,20 μL miR检测体系中含miR cDNA 1.0 μL。反应条件:95 ℃3 min;95℃ 25 s,62℃ 35 s,72℃ 25 s,35个循环。以提取小RNA前向标本中加入的Ce_miR-39为内参,使用2-△△Ct法计算并统计miR-135a组间表达的差异。
  1.7 统计学方法
  采用SPSS 18.0统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,两组间比较采用t检验;以P0.05)。见图1。
  与同时间对照组CSF比较,*P0.05)。见图2。     ?c同时间转基因小鼠CSF源外泌体干预比较,*P0.05)(图3)。SH-SY5Y细胞BACE-1 mRNA表达水平的变化趋势与其活性的变化趋势一致(图4)。
  与同时间转基因小鼠CSF源外泌体干预比较,*P 参考文献]
   Liu CG,Wang JL,Li L,et al. MicroRNA-135a and-200b,potential biomarkers for Alzheimer′s disease,regulate β secretase and amyloid precursor protein . Brain Res,2014, 1583:55-64.
   王全全,吕占云,孙大芳,等.早发家族性阿尔茨海默病家系患者血清miRNA检测及初步分析.中华行为医学与脑科学杂志,2017,26(6):554-559.
   刘辰庚,霍贵申,孟双,等.MicroRNA-135a突变体对β分泌酶-1的调控作用及初步临床调查.临床和实验医学杂志,2016,15(24):2389-2392.
   刘辰庚,孟双,张跃其,等.MicroRNA-135a在阿尔茨海默病患者中的检测.中国老年学杂志,2016,36(1):152-153.
   Quinlan S,Kenny A,Medina M,et al. MicroRNAs in neurodegenerative diseases . Int Rev Cell Mol Biol,2017, 334:309-43.
   Erdal ME,Y??Dlmaz SG,Gürgül S,et al. MiRNA expression profile is altered differentially in the rat brain compared to blood after experimental exposure to 50 Hz and 1 mT electromagnetic field . Prog Biophys Mol Biol,2017. pii: S0079-6107(17)30147-5. doi:10.1016/j.pbiomolbio.2017. 08.001.      Riancho J,Vázquez-Higuera JL,Pozueta A,et al. MicroRNA profile in patients with Alzheimer's disease:analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples . J Alzheimers Dis,2017,57(2):483-491.
   贾建平,陆璐,张逸驰,等.美国国立老化研究所与阿尔茨海默病协会诊断指南写作组:阿尔茨海默病源性轻度认知障碍诊断标准推荐.中华神经内科杂志,2012,45(5):345-351.
   贾建平,陆璐,张逸驰,等.美国国立老化研究所与阿尔茨海默病协会诊断指南写作组:阿尔茨海默病痴呆诊断标准的推荐.中华神经内科杂志,2012,45(5):352-355.
   Putteeraj M,Yahaya MF,Teoh SL. MicroRNA dysregulation in Alzheimer′s disease . CNS Neurol Disord Drug Targets,2017.doi:10.2174/1871527316666170807142311.
   Silva GJJ,Bye A,El Azzouzi H,et al. MicroRNAs as important regulators of exercise adaptation . Prog Cardiovasc Dis,2017,60(1):130-151.
   Recabarren D,Alarcón M. Gene networks in neurodegenerative disorders . Life Sci,2017,183:83-97.
   Hu YB,Li CB,Song N,et al. Diagnostic value of microRNA for Alzheimer's Disease:a systematic review and meta-analysis . Front Aging Neurosci,2016,8:13.
   Wang X,Liu D,Huang HZ,et al. A novel microRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer′s disease . Biol Psychiatry,2017. pii: S0006-3223(17)31853-X. doi: 10.1016/j.biopsych.2017.07.023.
   Chen JJ,Zhao B,Zhao J,et al. Potential roles of exosomal microRNAs as diagnostic biomarkers and therapeutic application in Alzheimer's disease . Neural Plast,2017, 2017:7027380.
   Zhao J,Yue D,Zhou Y,et al. The role of microRNAs in Aβ deposition and tau phosphorylation in Alzheimer's disease . Front Neurol,2017,8:342.
   Maoz R,Garfinkel BP,Soreq H. Alzheimer's Disease and ncRNAs . Adv Exp Med Biol,2017,978:337-361.
   Prasad KN. Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer's disease . Mech Ageing Dev,2017,162:63-71.
   Basavaraju M,de Lencastre A. Alzheimer's disease:presence and role of microRNAs . Biomol Concepts,2016, 7(4):241-252.
   Batistela MS,Josviak ND,Sulzbach CD,et al. An overview of circulating cell-free microRNAs as putative biomarkers in Alzheimer's and Parkinson's Diseases . Int J Neurosci,2017,127(6):547-558.
  (收稿日期:2017-08-10 本文?辑:程 铭)
页: [1]
查看完整版本: 2018外泌体内microRNA―135a跨血脑屏障转运的初步研究