2018隐丹参酮诱导乳腺癌 MDA―MB―231 细胞凋亡的研究
[摘要] 目的 探?隐丹参酮对乳腺癌MDA-MB-231细胞凋亡的影响及其机制。 方法 用不同浓度的隐丹参酮处理MDA-MB-231细胞24 h。采用 MTT、流式细胞术检测不同浓度隐丹参酮对MDA-MB-231细胞活性、凋亡的影响。采用Western blot检测MDA-MB-231细胞中Bcl-2、Bax、Caspase-3蛋白表达水平。 结果 与0 μmol/L对照组相比,10 μmol/L、20 μmol/L、40 μmol/L、80 μmol/L隐丹参酮组MDA-MB-231细胞存活率显著降低,且呈剂量依赖(P0.05)。在40 μmol/L、80 μmol/L浓度时MDA-MB-231细胞凋亡率分别是(18.74±0.65)%、(28.04±3.08)%,与对照组相比有统计学差异(P http://[关键词] 隐丹参酮;乳腺癌;MDA-MB-231细胞;凋亡
[中图分类号] R273 [文献标识码] A [文章编号] 1673-9701(2017)34-0038-05
Study of cryptotanshinone inducing apoptosis of breast cancer MDA-MB-231 cells
ZHOU Nanyang1 ZHAO Hong2
1.Department of Traditional Chinese Medicine, Hangzhou Obstetrics and Gynecology Hospital, Hangzhou 310008, China; 2.Department of Breast Surgery, the First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310006, China
Objective To investigate the effect of cryptotanshinone on the apoptosis of breast cancer MDA-MB-231 cells and its mechanism. Methods MDA-MB-231 cells were treated with different concentrations of cryptotanshinone for 24h. The effects of different concentrations of cryptotanshinone on the activity and apoptosis of MDA-MB-231 cells were detected by MTT and flow cytometry. Western blot was used to detect the protein expressions of Bcl-2, Bax and Caspase-3 in MDA-MB-231 cells. Results Compared with that of the 0 μmol/L control group, the survival rates of MDA-MB-231 cells in 10, 20, 40, 80 μmol/L cryptotanshinone groups were significantly decreased(P0.05). The apoptosis rates of MDA-MB-231 cells were (18.74±0.65)% and (28.04±3.08)% respectively at 40 μmol/L and 80 μmol/L, which were different from those of the control group(P Cryptotanshinone; Breast cancer; MDA-MB-231 cells; Apoptosis
乳腺癌是女性最常见的恶性肿瘤之一,其发病率逐年增加,目前居女性癌死亡率第一位。其中,以雌激素、孕激素及人类表皮生长因子受体2(human epidermal growth factor receptor-2,Her-2)表达阴性的三阴乳腺癌(triple negative breast cancer,TNBC)恶性程度最高,因其对内分泌治疗和抗Her-2靶向治疗不敏感,故生存率比非三阴性乳腺癌差。针对抗三阴乳腺癌的新药研究成为目前乳腺癌治疗的重点之一。隐丹参酮(Cryptotanshinone)是从中药丹参根中提取分离的二萜醌类有效单体,具有抗炎、抗菌、抗动脉粥样硬化等多种生物学活性和药理效应。近年来文献报道,隐丹参酮可有效抑制多种肿瘤细胞增殖、侵袭,诱导肿瘤细胞凋亡,抑制血管生成,从而发挥其抗肿瘤的作用。目前,有关隐丹参酮对乳腺癌细胞凋亡的影响及其机制尚不清楚。本研究以三阴乳腺癌 MDA-MB-231细胞为研究对象,用不同浓度隐丹参酮干预,检测其对细胞活性和凋亡的影响,检测抗凋亡蛋白Bcl-2和促凋亡蛋白Bax、Caspase-3表达水平,从而观察隐丹参酮对MDA-MB-231细胞凋亡的影响,并初步探究其机制。
1 材料?c方法
1.1 材料来源
乳腺癌MDA-MB-231细胞购自中国科学院上海生命科学研究院细胞库,本实验室传代保存。胎牛血清和 RPMI 1640 培养基购自Hyclone 公司。隐丹参酮购自成都曼思特生物科技有限公司(纯度大于98%)(图1),将隐丹参酮溶于 DMSO配制成等20 mmol/L的储备液,分装后于-20℃储存;使用时用无血清 RPMI 1640 培养液稀释为10 μmol/L、20 μmol/L、40 μmol/L、80 μmol/L的工作液,DMSO 终浓度为 0.1%,对照组为含0.1% DMSO的细胞培养液。兔抗人Bcl-2、Bax、Caspase-3和 β-actin抗体和辣根过氧化物酶标记山羊抗兔 IgG购自 Cell Signaling Technology公司。Bradford蛋白浓度测定试剂盒购自美国Bio-Rad公司。流式抗体 Annexin V-FICT/PI双染细胞凋亡检测试剂盒购自南京凯基生物。
1.2 方法
1.2.1 细胞培养 乳腺癌 MDA-MB-231 细胞在37℃,5% CO2条件下,常规培养于含 10%胎牛血清的 RPMI 1640 培养基。当细胞密度达 90%并处于对数生长期时,用 0.25%胰酶消化传代培养。
1.2.2 细胞活性检测 取对数生长期的MDA-MB-231细胞,接种于96孔板,每孔100 μL细胞悬液,细胞数1×104/孔,每组设5个复孔。培养 24 h后,吸弃原培养液,各孔分别加入 200 μL 含有不同浓度隐丹参酮的工作液(0、10 μmol/L、20 μmol/L、40 μmol/L、80 μmol/L),同时设调零孔。继续培养24 h后,利用 MTT 法在波长490 nm 处检测各组样品吸光度值(A490)。细胞存活率=(实验组A值-对照组A值)/(对照组A值-空白组A值)×100%,对照组定义为100%。实验重复3次。
1.2.3 细胞凋亡检测 取对数生长期的MDA-MB-231细胞,接种于6孔板,3×105/孔,每组设3个复孔。培养24 h后,吸弃原培养液,以不同浓度隐丹参酮(0、20 μmol/L、40 μmol/L、80 μmol/L)处理细胞。继续培养24 h后,收集1×105细胞,加入500 μL Binding Buffer悬浮细胞,加入 5 μL Annexin V-FITC和5 μL Propidium Iodide 混匀后,温室避光孵育染色10 min。用流式细胞仪进行检测。实验重复 3 次。
1.2.4 Western blot 检测蛋白表达 取对数生长期MDA-MB-231细胞,接种于6孔板,1×106/孔,待细胞融合至 80% 时,以不同浓度隐丹参酮(0、40 μmol/L、80 μmol/L)处理细胞。继续培养24 h,收集细胞,4℃预冷的PBS洗涤3次,加入75 μL细胞裂解液,冰上裂解30 min,提取细胞总蛋白,bradford法测蛋白质浓度。取 25 μg蛋白样品,10% SDS-PAGE 电泳分离蛋白后转移至 PVDF 膜,用5% BSA/TBST封闭液室温下封闭1 h,洗膜后加入抗Bcl-2、Bax、Caspase-3和 β-actin 一抗(1∶1 000稀释 ),4°C孵育过夜,TBST洗膜 3 次,加入二抗(1∶1 000稀释)室温下孵育2 h,TBST 洗膜 3 次,将化学发光增强液A和B等体积混匀涂抹于PVDF膜上,用Bio-Rad凝胶成像系统获取图像。实验重复3次。
1.3 统计学方法
采用 SPSS 17.0 统计学软件分析,计量资料以(x±s)表示,多组间比较采用单因素方差分析,两两比较采用 Bonferroni 校正的t检验,P 2.2 隐丹参酮对MDA-MB-231细胞凋亡的影响
本研究用Annexin V-FICT/PI双染流式细胞术检测隐丹参酮对MDA-MB-231细胞凋亡的影响,结果显示,隐丹参酮在20 μmol/L浓度时对MDA-MB-231细胞凋亡率为(6.34±0.52)%,与对照组(6.09±0.76)%相比无统计学差异;隐丹参酮在40 μmol/L、80 μmol/L浓度时??MDA-MB-231细胞凋亡率分别是(18.74± 0.65)%,(28.04±3.08)%。与对照组(6.09±0.76)%相比差异具有统计学意义(P参考文献]
Pareja F,Geyer FC,Marchiò C,et al. Triple-negative breast cancer:The importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer,2016,(2):16036-16047. Locatelli MA,Curigliano G,Eniu A,et al. Extended adjuvant chemotherapy in triple-negative breast cancer. Breast Care(Basel),2017,12(3):152-158.
Marotti JD,de Abreu FB,Wells WA,et al. Triple-negative breast cancer:Next-generation sequencing for target identification. Am J Pathol,2017,187(10):2133-2138.
Zhang XZ,Qian SS,Zhang YJ,et al. Salvia miltiorrhiza: A source for anti-Alzheimer's disease drugs. Pharm Biol,2016,54(1):18-24.
Akaberi M,Iranshahi M,Mehri S. Molecular signaling pathways behind the biological effects of salvia species diterpenes in neuropharmacology and cardiology. Phytother Res,2016,30(6):878-893.
Chen W,Lu Y,Chen G,et al. Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anticancer Agents Med Chem,2013,13(7): 979-987.
Xu Z,Jiang H,Zhu Y,et al. Cryptotanshinone induces ROS-dependent autophagy in multidrug-resistant colon cancer cells. Chem Biol Interact,2017,(273):48-55.
O'Sullivan CC,Davarpanah NN,Abraham J,et al. Current challenges in the management of breast cancer brain metastases. Semin Oncol,2017,44(2):85-100.
Chen Z,Zhu R,Zheng J,et al. Cryptotanshinone inhibits proliferation yet induces apoptosis by suppressing STAT3 signals in renal cell carcinoma. Oncotarget,2017,8(30): 50023-50033.
Kim EJ,Kim SY,Kim SM,et al. A novel topoisomerase 2a inhibitor,cryptotanshinone,suppresses the growth of PC3 cells without apparent cytotoxicity. Toxicol Appl Pharmacol,2017,(330):84-92.
Chen L,Wang HJ,Xie W,et al. Cryptotanshinone inhibits lung tumorigenesis and induces apoptosis in cancer cells in vitro and in vivo. Mol Med Rep,2014,9(6):2447-2452.
Lin L,Baehrecke EH. Autophagy,cell death,and cancer.Mol Cell Oncol,2015,2(3):e985913.
Tummers B,Green DR. Caspase-8:Regulating life and death. Immunol Rev,2017,277(1):76-89.
Linder M,Tschernig T. Vasculogenic mimicry:Possible role of effector caspase-3,caspase-6 and caspase-7. Ann Anat,2016,( 204):114-117.
Wu CW,Liu HC,Yu YL,et al. Combined treatment with vitamin C and methotrexate inhibits triple-negative breast cancer cell growth by increasing H2O2 accumulation and activating caspase-3 and p38 pathways. Oncol Rep,2017,37(4):2177-2184.
Ou L,Lin S,Song B,et al. The mechanisms of graphene-based materials-induced programmed cell death:A review of apoptosis,autophagy,and programmed necrosis. Int J Nanomedicine,2017,(12):6633-6646.
S Soderquist R,Eastman A.BCL2 inhibitors as anticancer drugs:A plethora of misleading BH3 mimetics. Mol Cancer Ther,2016,15(9):2011-2017.
Cosentino K,Garcia-Saez AJ. Bax and bak pores:Are we closing the circle.Trends Cell Biol,2017,27(4):266-275.
Renault TT,Dejean LM,Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2.Mech Ageing Dev,2017,161(Pt B):201-210.
Yuan Z,Jiang H,Zhu X,et al. Ginsenoside Rg3 promotes cytotoxicity of paclitaxel through inhibiting NF-kappaB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed Pharmacother,2017,(89):227-232.
(收稿日期:2017-09-29)
页:
[1]