314090 发表于 2018-5-4 17:51:16

高三数学练习题及答案:一元二次不等式

1.若不等式x2-2ax+a>0对一切实数x∈R恒成立,则关于t的不等式at2+2t-30对一切实数x∈R恒成立,则Δ=(-2a)2-4a0,解得t1,故选B.
  答案:B
  2.若不等式组x2-2x-3≤0,x2+4x-?1+a?≤0的解集不是空集,则实数a的取值范围是
  ()
  A.(-∞,-4]B.[-4,+∞)
  C.[-4,20]D.[-40,20)
  解析:设f(x)=x2+4x-(1+a),根据已知可转化为存在x0∈[-1,3]使f(x0)≤0.易知函数f(x)在区间[-1,3]上为增函数,故只需f(-1)=-4-a≤0即可,解得a≥-4.
  答案:B
  3.(2013?江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.
  解析:∵f(x)是定义在R上的奇函数,
  ∴f(0)=0,
  又当x0,
  ∴f(-x)=x2+4x.
  又f(x)为奇函数,∴f(-x)=-f(x),
  ∴f(x)=-x2-4x(x0,0,x=0,-x2-4x,x0时,由f(x)>x得x2-4x>x,解得x>5;
  (2)当x=0时,f(x)>x无解;
  (3)当xx得-x2-4x>x,
  解得-5
  综上得不等式f(x)>x的解集用区间表示为(-5,0)∪(5,+∞).
  答案:(-5,0)∪(5,+∞)
  4.已知f(x)=-3x2+a(6-a)x+b.
  (1)解关于a的不等式f(1)>0;
  (2)若不等式f(x)>0的解集为(-1,3),求实数a,b的值.
  解:(1)∵f(1)>0,∴-3+a(6-a)+b>0,
  即a2-6a+3-b0,即b>-6时,
  方程a2-6a+3-b=0有两根a1=3-6+b,
  a2=3+6+b,
  ∴不等式的解集为(3-6+b,3+6+b).
  综上所述:当b≤-6时,原不等式的解集为?;
  当b>-6时,原不等式的解集为(3-6+b,3+6+b).
  (2)由f(x)>0,得-3x2+a(6-a)x+b>0,
  即3x2-a(6-a)x-b<0.∵它的解集为(-1,3),
  ∴-1与3是方程3x2-a(6-a)x-b=0的两根.
  ∴-1+3=a?6-a?3,-1×3=-b3,
  解得a=3-3,b=9或a=3+3,b=9.
页: [1]
查看完整版本: 高三数学练习题及答案:一元二次不等式